THE UNIVERSITY OF CHICAGO

AUTOMORPHISMS AND NONINVARIANT PROPERTIES OF THE
COMPUTABLY ENUMERABLE SETS

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

BY
KEVIN MITCHELL WALD

CHICAGO, ILLINOIS
AUGUST 1999

To Bernard, Francine, and David Wald.

ABSTRACT

This thesis concerns automorphisms and noninvariant properties of the computably
enumerable sets. We prove two results relating semilow sets and prompt degrees
via automorphisms, one of which is complementary to a recent result of Downey
and Harrington. We also show that the properties of quasicreativity, n-creativity,
subcreativity, and effective simplicity are not invariant under automorphism, and that
in fact every promptly simple set is automorphic to an effectively simple set. The
techniques used in these proofs include a modification of the Harrington-Soare version
of the method of Harrington-Soare and Cholak for constructing A automorphisms;
this modification takes advantage of a recent result of Soare on the extension of

“restricted” automorphisms to full automorphisms.

il

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Prof. Robert Soare, to whom I am most
indebted for the support, advice, and education he supplied, and for the interest and
patience he displayed, during my research towards and preparation of this disserta-
tion.

I would also like to thank Prof. Peter Cholak for his numerous helpful comments
and observations; Prof. Carl Jokusch for his suggestions regarding effective simplicity;
and all those others who through their help and encouragement made this dissertation

possible.

v

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS

1 SEMILOW SETS AND PROMPT DEGREES

1.1 Introduction
1.1.1 Background
1.1.2 Lowness and Promptness
1.1.3 Downey-Harrington and Theorem 1.1.11

1.2 Proof Machinery
1.2.1 The Harrington-Soare Machinery
1.2.2 The New Extension Theorem
1.2.3 Additional Machineryo
1.2.4 Constructiono Lo

1.3 Verification
1.3.1 Tree Properties (Restricted Version)
1.3.2 Correctness of M4, ./E/l\B, NAand NBon f
1.3.3 Verifying that GA=GB . ..
1.3.4 Tree Properties (Unrestricted Version)
1.3.5 Verifying that B<pC

1.4 Proof of Theorem 1.1.11

NONINVARIANCE

2.1 Introduction

2.2 Distinctness of n-creativity Notions
2.2.1 Another Definition of n-creative
2.2.2 Proof of Theorem 2.1.2
2.2.3 Proof of Theorem 2.1.3

2.3 Noninvariance of Quasicreativity and n-creativity

2.4 Noninvariance of Subcreativity L.
24.1 Proof via Theorem 2.4.1
2.4.2 Intuition and Machinery
24.3 Construction
2.4.4 Verification L

2.5 Effective Simplicity
2.5.1 Intuition and Machinery

2.5.2
2.5.3
2.5.4
2.5.5

REFERENCES

vi

Construction e e 60
Verifying Correctness of M4, M® N4 and N¥ on f 63
Verifying that GA=GB. ... 67
Verifying that B is Effectively Simple. 68

69

CHAPTER 1
SEMILOW SETS AND PROMPT DEGREES

1.1 Introduction

1.1.1 Background

A set A C w is computably enumerable (c.e.) if its elements can be listed by an
effective algorithm. The collection of computably enumerable sets can then be given
two different kinds of structure, one based on their computational properties, and one

based on their algebraic properties:

1. The c.e. Turing degrees form an upper semilattice C under <; (Turing reducibil-

ity), and

2. The c.e. sets form a lattice £ under inclusion.

In 1944, Post [8] first looked at the connection between these structures; in the
search for a noncomputable incomplete degree, he defined several new properties of
c.e. sets (such as creativity, simplicity, and hyperhypersimplicity) that have turned
out to be definable purely in terms of set inclusion. Ever since that time, there has
been an ongoing program of examining the relationship between the structures of C
and &.

One fruitful area of research has been the study of automorphisms of £. This
began in the 1970s, starting with Soare [12], and being further developed by the
work of Maass, Stob, Downey, Harrington, and others. This early work involved
the construction of effective automorphisms of various sorts. Then in the mid 1990s,
Harrington and Soare, and independently Cholak, introduced a powerful new method
for constructing automophisms. This method, described in [6], combines the use of

computable trees (as introduced by Lachlan) with previous automorphism methods

1

2

to produce AJ (0”-computable) automorphisms. This has allowed numerous results,
which had not yielded to effective automorphism methods, to become attainable.
For any two c.e. sets A and B, if there an automorphism ® of £ such that ®(A) =
B, we say that A is automorphic to B (denoted A ~ B). Many past questions about
automorphisms have concerned whether two c.e. sets of particular kinds may or may
not be automorphic. For instance, Soare [12] showed that any two maximal c.e. sets A
and B are automorphic, and more recently Downey and Stob [4] have shown that the
same is true for hemimaximal sets. Numerous other results connect sets of different
kinds; to take just one example, the above-mentioned method of Harrington-Soare
and of Cholak was applied by them ([6], [2]) to show that every noncomputable c.e.

set, is automorphic to some high c.e. set.

1.1.2 Lowness and Promptness

In constructing an automorphism involving a given c.e. set A, we frequently wish to

exert two forms of control regarding the enumeration of elements into A:

(1) We want to be able to guarantee that at least some “unwanted” elements will

remain outside of A, and

(2) We want to be able to guarantee that at least some “wanted” elements eventu-

ally enter A.

Among the properties of c.e. sets that can particularly help us achieve (1) are the

lowness properties:

Definition 1.1.1 A is low if A" € 0.

Definition 1.1.2 A is semilow if {e: W, N A # 0} < 0.

Among the properties that can help us with (2) are the promptness properties:

Definition 1.1.3 A is promptly simple (p.s.) if there are a computable function p

and a computable enumeration {A}se, of A such that for all e,

W, infinite = (3s)(Iz)[x € W, ar s N Ap(s)]-

Definition 1.1.4 A is prompt if A =¢ B for some p.s. set B.

A classic result employing these properties is that of Maass [7]:

Theorem 1.1.5 (Maass, 1982) If A and B are low (or even have semilow compli-
ment) and are p.s. then A ~ B.

The first result of this paper deals with a similar case, but one with less information

about our two sets:

Theorem 1.1.6 For any c.e. set A which is low (or even has semilow complement)
and for any promptly simple (p.s.) set C, there exists a c.e. set B < C with A
automorphic to B (denoted by A ~ B).

The proof of this relies on a modification of the AJ-automorphism method de-
scribed in [6]. A brief account of the machinery of this method will be given in §1.2.1.
In §1.2.2, we will describe the major modification to the method that must be made;
specifically, the construction will be restricted to the complements of the given set A
and the constructed set B, and then the “New Extension Theorem” of Soare (The-
orem 1.2.6) will be employed to show that this restricted construction implies the
existence of a full automorphism between A and B. Then §1.2.3 will describe the
other additions that are required, and §1.2.4 will describe the overall construction.
The verification of this construction will be given in §1.3.

Theorem 1.1.6 gives rise to several corollaries. First of all, every c.e. degree con-

tains a set with semilow compliment [14, p. 73]. Hence,

Corollary 1.1.7 (Ya > 0)(Y promptly simple C')(3A € a)(3IB <r C)[A ~ BJ.

Also, as Downey and Cholak have observed, if we take two low p.s. degrees d
and c, then the lower cone of either one consists of sets that can fulfill the role of
A above, and can therefore be automorphically mapped into the lower cone of the

other. Hence,

Corollary 1.1.8 There exist distinct noncomputable c.e. degrees d and ¢ such that

(VA <p d)(3B <7 o)[A~ B] & (VB <7 ¢)(34 <; d)[A ~ B].

1.1.83 Downey-Harrington and Theorem 1.1.11

A degree is said to be prompt if it contains a p.s. set, and tardy if it does not. Downey
and Harrington have shown the following result on prompt low degrees and tardy

degrees:

Theorem 1.1.9 (Downey-Harrington) There are a prompt low degree ¢ and tardy

degree a such that
(VB € ¢)(VA <y a)[A # B].

Theorem 1.1.6 is complementary to this result, in that it shows that Theorem 1.1.9
cannot be extended to the cone below c. That is, Theorem 1.1.6 has the following

corollary:

Corollary 1.1.10 For any prompt degree ¢ (low or otherwise), and any degree a
(tardy or otherwise), there exist some A <p a (in fact, some A € a) and some

B <t c such that A ~ B.

Proof. Take A to be a set in a with semilow complement, and C' to be a p.s. set in

¢, and apply Theorem 1.1.6. []

Theorem 1.1.9, in turn, places a restriction on how Theorem 1.1.6 may be ex-
tended. In the latter theorem, we show that for A semilow and C p.s., A is automor-
phic to some B <; C. This raises the question of whether such a B can always be
found so that B is not only computable from C', but actually Turing equivalent to C'.
Theorem 1.1.9 shows that this cannot always be done.

However, suppose we have an A that not only has semilow compliment, but is also

promptly simple. Then we do get the following result:

Theorem 1.1.11 If A is low (or has semilow complement) and p.s. and C is p.s.,
then (3B =r C)[A ~ B].

We prove this in §1.4, with the aid of Maass’s Theorem 1.1.5.

1.2 Proof Machinery

1.2.1 The Harrington-Soare Machinery

Since our work closely follows the methods of Harrington and Soare [6], it is necessary
to review some of their machinery.

First of all, we consider the construction of our automorphism to be a game
between two players, RED and BLUE. RED constructs two complete collections of
the c.e. sets, {Up,}new and {V, }nen, and BLUE in response constructs {Un}new and
{?n}new, so that our final automorphism will map each U, to ﬁn and each 17n to V,,.

These constructions will be performed by enumerating elements into the appro-
priate sets. From one copy of the natural numbers (w) RED enumerates elements
into U, and BLUE into V,; from a second copy (@) RED enumerates elements into
V, and BLUE into ﬁn To keep track of what sets a given z or z is in, we define the

full e-state of x, as follows:

Definition 1.2.1 Given two sequences of r.e. sets {X,} e and {Y,},cn, define
v(e,x), the full e-state of x with respect to (w.r.t.) {X,}neo and {Y,}ne, to be

the triple (e, o(e, x), 7(e, z)), where

ole,x) ={i:i<e & z € X;}, and

T(e,z) ={i:i<e & z €Y}

To guarantee that a construction of this type produces an automorphism, it suffices
to show that the states on one side that are “well resided” (contain infinitely many
elements) correspond exactly to the “well resided” states on the other side. That is,

that

(V) (3®z € w)[v(e,x) = v w.rt. {Uptnew and {V, el

= (3% € W)[v(e,2) = v wrt. {Untncw and {V, }new]:

6

Second, this construction is performed on a tree T. Each node « has attached
to it certain guesses regarding what states will be “well visited” (will have infinitely
many elements enter them) and what states will nonetheless be “emptied” (will be
well visited but not well resided). The nodes on the true path f will in the end be
those that have guessed correctly. As the construction progresses, there are successive
approximations f, to f.

In addition, elements travel along the tree either downwards or leftwards (the
latter generally when f; shifts leftwards). We may thus describe for each node «, at

each stage s, the following sets:

Sas ={r:a(z,s) =a}

(the elements z “at” node «),

R,s={x:a(z,s) D a}

(the elements at or below node «), and

Yoo = (J{Rap:t <s}

(the elements x that have ever been at node «).
We also have the duals §a,s; Ea,s, and ?a,s of these, for elements .
For technical reasons, we will be dividing the elements that enter S, ; into two

sets, S9, and S}, (the former is used as a source of elements for coding and such

5
purposes, while the latter provides the elements to be passed on down to successor
nodes).

The elements of R, s (}A%a,s) may then be enumerated into sets U, and 17a (ﬁa and
V&), which represent approximations to U,, and Vv, (ﬁn and V,,), for || =5n+ 1 and
5n + 2 respectively. (That is, we will have U, =* U,, and V,, =* V,, by construction,
and ﬁn = ﬁa and \7n = 17@ by definition, for any o C f.)

For « in general, we let e, (é,) be the greatest n such that 5n+1 (5n+ 2) < |a/.

(Thus, e, > e, exactly when there exist sets U, and ﬁa, and é, > é,- exactly when

7

there exist sets V, and Va.) Then to keep track of our a-sets we define a-states as

follows:
Definition 1.2.2 (i) The a-state of x at stage s, v(a, x, s), is the triple

(o, 0(a,x,8), T(cr, , 5)) where

oo, z,s) ={eg: B Ca & eg>es- & v € Upsyl,

T(o,z,8) ={ég:fCa & é3>ég- & x € V).
(ii) The final a-state of x is v(a,z) = (o,0(a,z),7(c,x)) where o(a,z) =
lim, o (e, z, s) and 7(,) = limg 7(av, x, 8).

For technical reasons, we will also sometimes need a modified version of v(«, z,)
or v(a,,s) that depends solely on a~. Where § = a7, if e, > ez then we define
vt (a,z,s) to be the result of replacing U, s in the definition of v(a,z,s) with the

similar set Z,, ; defined by
_ . 1
Zea,s—l—l —dfn {IL‘ T e Uea,s—l—l & x e YB,S}'

If é, > é3 we similarly define v (a,Z,s) to be the result of replacing Ua,s in the

definition of v(«, , s) with Z\éa’s defined by
Zéa’5+1 —dfn {QZA' . i’ € ‘/éa,s+1 & i’ € Yﬂl’s}.

It is in terms of a-states that our guessing machinery for each node is phrased.

For every node «, we have the following lists (sets of a-states):

1. M,, a’s guess about what a-states are well visited;
2. B,, a’s guess about what a-states are emptied by BLUE;
3. Ra, a’s guess about what a-states are emptied by RED;

4. N, =B, U R,, a’s guess about what a-states are emptied overall;

8

and all of their duals. Our construction will guarantee that the guesses M,, M\a, N,
and /\7a are correct for all a on the true path. For any a our guess M\a always equals
{0 :v e M,} and N, always equals {0 : v € N,} (we will sometimes loosely state
these correspondences as M\a = M, and /\A/’a = MN,); we thus will guarantee that the
sets of genuinely well resided states of both sides will likewise correspond. We will
designate these sets of genuinely well resided states by &, and Iea. (In this we depart
slightly from the notation of [6], in which K, and Kq referred to the complements of
these sets.)

In addition, we have the following machinery to aid in our construction:
Eo ={v: (3°2)(39)[x € Sas — |J {Sau 1t < s} & v(a,z,5) =]}

(the set of all a-states that are well visited by elements first coming into S,),

for j = 1,2,
El={v:(3*x)(3s)[z € 5, - U {Sar:t<s} & v(a,z,s) =v]}

(the set of all a-states that are well visited by elements first coming into S, in S),

and
Fo={v:(32)(3s)[z € Ra,y & v(a,z,s)=v]}

(the set of all a-states that are genuinely well visited by elements of R,). For a C f,
we will have £, = £% = &l = F, = M,,.

Also, for technical reasons, we have:

1. A list .7-"5’ similar to F, that is attached to the node f = o~ and depends only
on 3. If e, > eg then we define

.7:; ={v:(3%z)3s)[r € Yﬁl,s & vi(a,x,s) =]},

and .7?5’ ={v:ve Ff};if éq > ég then we define .7?5’ by the dual of the above
expression and define Fj = {v:v € 7?;}

9

2. A number k, that is attached to the node «; k, is a guess at an upper bound

for the set of all ’s and z’s that are permanently in a non-well-resided a-state.

These are used in the course of defining f and f,. Specifically, f and f, are defined
using a recursive collection of c.e. sets {C,}, with a C f iff |Cy| = 00 and « C fyiy
iff o= C fo41 and |Cys11| > |Cas|- These {C,} are defined so that if |C,,| = 0o then

we automatically have that
1. M, =FI,
2. M, =F/,
3. R, and ﬁa are correct guesses, and

4. k, is a correct guess.

Thus, to verify that our construction indeed yields an automorphism, we need only

separately verify that f is infinite and that for all o C f,
I Ff = F.,
2. 7?;2 = F., and

3. B, and B, are correct guesses.

The final notions we must define are those of consistency; if a node « is inconsis-

tent, then it is terminal (and we must ensure that it is not on the true path).

Definition 1.2.3 A node o € T is M-inconsistent if e, > eg, where § = a~, and
there are a-states vy <p vy such that vy € M, and v, [f € Mj but v, ¢ M,.

Otherwise « is M-consistent.

Definition 1.2.4 A node « € T is R-consistent if

(\V/l/o € Ra)(Elul)[uo <p 1 & v € Ma].

10

That is, « is M-consistent if every state a BLUE move away from a putative well
visited state is well visited, and R-consistent if every state which RED is supposed
to empty has a state where RED can put the elements it is supposed to be removing.
We also have the corresponding dual notions of ﬂ—consistency and ﬁ—consistency.
In our modified version of the Harrington-Soare construction, a node « is said to be
consistent if it is M-consistent, M\—consistent, R-consistent, and R-consistent. (In
this, our definition of consistency differs from the definition in [6], which also includes
a notion of C-consistency or D-consistency, which makes it possible to do certain kinds

of coding.)

1.2.2 The New Eztension Theorem

We now add to the techniques of [6] the notion of restriction to A and B, which
will enable us to use the New Extension Theorem. In [6], elements are enumerated
into c.e. sets U,, Ua, V., and Vv, (for « € T) by two players, RED and BLUE.
In this construction, where p = f[1, U, and ﬁp will, in the end, equal A (up to
finite difference) and B respectively; U, =* A because almost every element of A is
eventually enumerated into U,, and B is defined to equal ﬁp.

For technical reasons, we will find it advantageous to modify this construction

slightly, so that
1. We know during the course of the construction exactly what p is,
2. At every stage s, fs[1 = p, and

3. We can therefore define enumerations {A;} and {Bs} of A and B by setting
A;=U,, and B, = U 5

We do this by modifying the definition of C, for all & such that a = 1. Let p; be
the node such that [p;| = 1, and

1. Mm = {<p17®7®>7 <P1, {0}7®>}7

2. M, = {{p1,0,0), (p1, {0},0)}, and

11

3. k,, =0.

p1

That is, node p; guesses that
1. Both U,, and its complement, considered as p;-states, will be well visited,
2. Both ﬁpl and its complement, considered as p;-states, will be well visited, and
3. No element will remain in a non-well-visited p;-state.

(Note that we need not specify R,,, ﬁpl, B, , and gpl, because these are the same
for all a with || = 1.) We then define C,, = w, and C, =) for all other o with
la] = 1.

This will indeed guarantee that p = p;, and that f;[1 = p; for all s; we will then
define A; and By as above. However, because we have redefined C,, for || = 1, we now
must verify the statements that the definition of C, used to guarantee automatically;

that is, we must separately verify the following tree properties:
1. M,=F},
2. M\p = j-:;r , and
3. k, is a correct guess.

(Again, we do not have to verify that R, and ﬁp are correct guesses, because these
are the same for all & with |a| = 1.) We will do this as part of the verification of our
construction, in §1.3.1 and §1.3.4.

Since we have now identified A with U, and B with ﬁp, we may thus speak of
A-states, A-states, B-states, and B-states, which will be those states including U,
not including U,, including [7,,, and not including ﬁp, respectively. We can then speak
of the restriction of a list of states to A, A, B, or B; for any list S (§), S4 (§B)
is the list of all A-states (B-states) in S (S), and S* (SB) is the list of all A-states
(B-states) in S (S).

So, for example, for any a we can consider M, as a disjoint union of its restric-
tion to A, M2, and its restriction to A, Mg, and we may treat these two sublists

separately; similarly, M\a can be considered as M\f L M\f (In particular, when we

12

show that M\p = 7?;’, we will do so by separately showing that ./T/l\pﬁ = ﬁ;’ﬁ and that
v 7+,B

Our designation of A-states, A-states, and so forth also allows us to consider the

moves in any RED/BLUE game to be divided into the following three types:

1. “Ezterior” move. A enumeration into U, 1 = Asq or Uys11 = Bgyi. (That

is, a move from an A-state into an A-state, or from a B-state into a B-state.)

2. A/B move. An enumeration into U, or V, (|a| > 1) of some = € A, or an
enumeration into U, or V, (la| > 1) of some & € B,. (That is, a movement

between A-states or between B-states.)

3. A/B move. An enumeration into U, or V, (Ja| > 1) of some z € A, or an
enumeration into U, or V, (la] > 1) of some & € B,. (That is, a movement

between A-states or between B-states.)

However, suppose we only ever consider moves of type 1 and type 2, and completely
ignore moves of type 3. This process can be considered a RED/BLUE game that is
very much like the RED/BLUE game in [6], except that

1. It is entirely restricted to A and B (that is, every object in the machinery of [6]

is replaced by its restriction to A or B), and

2. Elements occasionally are removed entirely from the game by exterior moves.

Such a construction would only guarantee a correspondence between the A-states
and the B-states. However, it turns out that if we also can guarantee a correspondence
between the exterior moves on the two sides, then this is enough to guarantee the
existence of an overall automorphism. The idea is that if we have elements entering
A and B in “the same states,” then a suitable set of type 3 moves, taking advantage
of this supply of elements, could be added to guarantee a correspondence between

A-states and B-states as well.

13

In order to keep track of this correspondence between exterior moves, we define

for every a the sets G2 and QAf:
GA={v:(3®r)3s)[x € Ay1 — A, & v=v(a,1,5) & € Yy},

and Q\f is defined correspondingly for B. That is, G2 (Q\f) is the set of all a-states v
() from which infinitely many elements are enumerated directly into A (B).
To further formalize this idea, we must also introduce the notion of an enumera-

tion:

Definition 1.2.5 Given a computable priority tree 7' with (infinite) true path f €
[T], an enumeration E for T is a simultaneous computable enumeration of c.e. sets
U,, V,, and ﬁa, ‘70“ for € T, such that {U,}acs and {V,}acs are both complete

collections of the c.e. sets up to finite differences.

The computable enumerations made while playing an A/B game thus define some
enumeration E, and we want to show that if E guarantees a correspondence of A-
states and B-states and of exterior moves on both sides, then we are guaranteed
the existence of an enumeration giving rise to a complete automorphism. The New

Extension Theorem (NET) states that this is indeed the case:

Theorem 1.2.6 (New Extension Theorem, Soare) If an enumeration E satis-

fies:

(T1) K*=KB, and

(T2) G*=g",

then A= B by an automorphism of £ which extends E.

The advantage of the NET, then, is that we automatically get an automorphism
between A and B if we can play our restricted game, and guarantee that the true

path f is infinite, and that on f

1. MZ, M\E, ./\/'Z, and NP are all correct guesses, and

2.

14

GA =GB

For the former, we will apply a form the proof used in [6] to show that the overall
RED/BLUE game causes M, M\, N, and N all to be correct on the true path,

modified slightly to take into account the occasional removal of elements by exterior

moves. The latter we will ensure by an appropriate choice of exterior moves.

1.2.8 Additional Machinery

Our tree construction will employ the following machinery:

1.

We have all of the machinery of Chapter 2 of [6], with the given modifica-
tion to the definitions of “consistent” and of C,, and restricted to A and B.
(Henceforth, when this will not cause confusion, we shall adopt the convention
of omitting the superscript A and B that indicates this restriction; e.g., we shall

refer to Mg as M,. This convention will be adopted in §1.2.4 and §1.3.2.)

. We have a fixed enumeration {Zs}sew of A.

In the course of our construction we will also be producing an enumeration
{As}sew of our given A and defining B by an enumeration { B} e, as described
in §1.2.2. A, (B;) will thus be equal to the set of all elements = () that have

been removed from our restricted construction at stage s by exterior moves.

. We have a list £9 of pairs of the form (o, 7), used to satisfy the requirement

that if v € G/! then 0 € Q\f Every time an element of some a-state v; enters
A, the pair {a, ;) is added to £9. We also guarantee that if («, 1) appears
infinitely many times in £9, then infinitely many elements from 7, are put into

B.

For every node q, for every A-state v of o, we have the following infinite sets of
markers and c.e. sets, which will be used, together with the semilowness of A,
to guarantee that the removal of elements from A does not interfere with our
construction (by a technique introduced by Robinson [9], and used for example

by Soare in [13]):

15

[0

(a) For each i € w, the marker Fil

and c.e. set Q,ljza One marker of this type

will be attached to any element = that enters S, in a-state v.

: 2, 2, :
(b) For each i € w, the marker I');" and c.e. set @, One marker of this type
will be attached to any element x that enters a-state v (whether it has

just entered S, or not).

(c) For each i € w, the marker I')¥ and c.e. set Q.. One marker of this
type will be attached to any element x in S,- if v*(z, @) becomes equal

to a-state v.

By the Recursion Theorem, we will also be able to assume for this construction

lL,a 2«
A

that we know indices ¢,7", ¢, and qgf‘ uniformly for the sets Q% Q?}f‘, and

vy

Q> respectively.

v,

6. For every node a, for every B-state of o, we will be constructing an infinity of
c.e. sets J;. (These will help us find elements of C' to permit necessary elements
to enter B.) By the Recursion Theorem and the Slowdown Lemma [14, p. 284]
we may assume that we know indices j;; uniformly for all these c.e. sets, such
that any given element appears in Wia, strictly later than we enumerate it into

(07
JI/,i'

1.2.4 Construction

This construction is based on that in [6]. Throughout this construction, as mentioned
in §1.2.3, we will adopt the convention of omitting the superscripts A and B that
indicate restriction to a A/B game.

Let h be the 0-1 valued function such that for all e, W.N A # 0 if and only if
h(e) = 1. By semilowness of A, h =¢ 0, so by the Limit Lemma there must exist a
computable function h such that lim, h(e, s) exists and equals h(e) (see [14, p. 72]);
we fix such a computable function A.

Because C' is prompt, by the Promptly Simple Degree Theorem [14, p. 284] there

16

exists a computable function p such that
W, infinite = (F2)(Is)[x € We,ars & Csla # Cpsyl]

We fix some such function p.
Every stage s + 1 in our construction will be divided into steps as in [6]. Now,

however, we must distinguish two different types of steps:

e Interior steps. These are the same as the corresponding numbered steps in [6],
except that they are restricted to A and B. In other words, a game played with
the interior steps alone would be simply a RED/BLUE game played on the A-
and B-states. Steps 1-5, /1*5\, and 11 of the present construction are of this

type.

e FExterior steps. These are steps by which elements are moved into A, or B,.
That is, if we consider just the RED/BLUE game played on A- and B-states,
elements are allowed to disappear entirely from the game during exterior steps.
In the current construction, the exterior steps are Step 0, which moves elements
into A; when necessary, and Step g, which moves elements into B; in order to

guarantee that G4 = GB.

Our construction is then as follows:

Stage s = 0. For all @ € T define Uyg = Vo0 = ﬁa,O = 17@,0 = (), and define
m(a,0) = 0. Define Y,y = }A@O =, and fo = A. Define every Qg,;, = 0 and every
marker I'}; o to be unassigned. Define every J; = (). Define Ay = By = 0.

Stage s + 1. Find the least n < 11 such that Step n applies to some = € Y, ; and
perform the intended action. If there is no such n, then find the least n < 11 such
that Step n applies to some & € i/}a,s, and perform the indicated action. If none of

these steps applies, then apply Step 11, and go to stage s + 2.
Step 0 (Moving elements into A).

Substep 0.1 (Enumerated elements). If z € (Y), N Zsﬂ) —(Yas1 N Zs),

17

(0.1.1) Where z is in a-state v, add to £9 a pair (3, 7] 8) for every 3 C a,
(0.1.2) Enumerate x into A1, and

(0.1.3) Designate every I'-marker attached to z as unassigned.

Substep 0.2 (Assigning a I'-marker to an x believed not to go into A). In the
following, to challenge x with regard to marker type j (= 1, 2, 3) and a-node v

means to do the following:

(i) Where i is the least number such that the marker ¢ is currently unassigned,

v,

enumerate x into Q7.
)

(ii) Find the least ¢ such that either

(a) h(qﬁf,t)iz 1 or
(b) = € A,

In case (a), assign marker I')7 to . In case (b),

(iii) If j = 1 or 2, add the pair to £9 a pair (3, 7] 3) for every 8 C «; if j = 3, add
a pair (3, 0] 3) for every 8 C a~;

(iv) Enumerate z into A, immediately; and

(v) Designate every I'-marker attached to x as unassigned.

Then Substep (0.2) consists of repeating the following three steps:

(0.2.1) If some element = is to be moved into some Y, in A-state v by Step 1 or
2, then challenge x with regard to marker type 1 and a-state v.

(0.2.2) If some element z is to be put into A-state v by one of Steps 1-5 or 11C,
then challenge x with regard to marker type 2 and a-state v.

(0.2.3) If there is some element x such that, as a result of = being enumerated
into U,, and/or the action of Steps 1-5, 11C, or 11E, v (z,) will become equal to

A-state v, then challenge x with regard to marker type 3 and a-state v.

until none of these three challenges described enters case (b) (that is, none of them

causes an element to enter A).

18
Steps 1-5, 1-5. As in [6], restricted to A and B.

Step 8. (Moving elements into B.)

Find the first unmarked pair (c, 7) in £9 such that there exists some z € §g78 in
state 7. Then

(8.1) Enumerate the least such & into I

(§2) Where & € Wia a4, if CyTx # Cp | x, then enumerate x into By, and

mark the current copy of («, 7).

Step 11. As in [6], restricted to A and B.

1.3 Verification

1.3.1 Tree Properties (Restricted Version)

As mentioned in §1.2.2, there are certain properties of the tree T' (the tree properties)
that hold automatically in the construction of [6], but which in our construction must

be proved to hold for p; namely
1. M,=F},
2. M\p = J/-:;r, and
3. k, is a correct guess.

In order to employ the NET, which holds for an enumeration E performed on a tree T’
defined as in [6], we need to show that these hold as given. However, our verfication
of the correctness of M*, M\E, N4, and NB only requires the use of the restrictions
to A and B of these tree properties. It will be most convenient, therefore, to verify

the tree properties in separate stages:
1. In this section, we verify the restrictions of these tree properties to A and B.
2. In §1.3.2 we use these tree properties to verify the correctness of M4, etc.

3. In §1.3.3 we use the above verification in our verification that G* = GB.

19

4. In §1.3.4, we use the correspondence between G4 and GB to show the full,

unrestricted form of these tree properties.

We assume, first of all, that A is infinite and coinfinite, for otherwise A is recursive

and Theorem 1.1.6 trivially holds. We now verify the following:

Lemma 1.3.1 M, =]—";r

Proof. By Substep 11E, every element x of w eventually enters Y,. Every element of
the infinite set A eventually enters some Ag by Step 0, and no element of the infinite
set A ever does. Thus, there are infinitely many z such that for some s, = € Y, and

x € A,, and there are infinitely many x such that for some s, z € V) ; and = ¢ A;, so

f; = {<p17®7(b>7<P1;{0},®>} — Mpl :Mp-]
(In particular, then, /\/lpZ = .7-";“2.)
Lemma 1.3.2 /T/l\pg =]?;F’E.

Proof. By Substep 11E, every element & of & eventually enters Y\ without first en-
tering any B,. Thus, (p1,0,0) € .7/-:;’, =)]/-:;”B = {(p1,0,0)} = /T/l\z = /T/l\pg. n

Lemma 1.3.3 No element of A or B remains permanently in a non-well-visited p-

state.

Proof. If v € A (& € B), then z (%) is permanently in the p-state {{p;, 0,)}, which

we have just seen is well-visited. []

(In other words, the guess k, = 0 is correct.)
We have thus verified the restricted versions of the tree properties for p. Since all
Ca, |a] > 1, are defined as in [6], these properties therefore hold automatically for all

a D p; that is, for all a D p,

1. M= F+A

[0}

)

=

’

2. M5

e+

, and

3. kg is the upper bound for all z € A and & € B that remain in a non-well-visited

o-state.

20
1.8.2 Correctness of MZ, M\E, NZ, and N'B on f

Throughout this section, we will once again adopt the convention mentioned in §1.2.3
of omitting the superscripts A and B that indicate restriction to a A/B game.

It suffices to verify that the versions of Lemmas 5.1 through 5.12 of [6] hold for
the A/B game as they did for the overall game in the Harrington-Soare construction.

To aid us in this, we first prove the following additional lemma:

Lemma 5.0. (All markers eventually receive permanent assignments.)

(i) If a-state v € &, then there exists an infinite set {z;};c., C A such that

(Vi)lims TV%, = 2; & (38)[2s € Sas — Yas1 & v(a,z4,5) = vl

V,t,S
(ii) If a-state v € F, then there exists an infinite set {z;};c, C A such that

(Vi)[limg 2 =z & (3s)[z; € Ros & v(a,xi,s) =v]].

VL,
(iii) If a-state v € F} then there exists an infinite set {x;};c, C€ A such that

(Vi)[lim, T>%, = 2; & (3s)[z € Ras & v (a,z,5) = 1]).

Viys

Proof. All of these proofs are similar; we therefore give just the proof for (i), which
serves with appropriate modifications for the other two:

(i) Assume by induction that this is true for all i' < ¢, and let ¢ be a stage by
which

(a) lim, T, =T, , for all #' > t, i’ <i; and

(b) lim, k(g s) = h(g,y,t') for all ' > t.
Then at some stage t' > t, Fll,f‘ must be assigned to some z (either F},f‘ is already
assigned at stage ¢, or the next x to enter S, in state v must have F,ljza assigned to
it by Step (0.2.1)). Thus, lim; h(q,i’io‘, s) = 1 (for if it were 0, Step (0.2.1) could not

assign a marker). Hence Q,llf‘ N A # 0, so some y eventually goes into Q,llf‘ that does

La - 1,a . . .
i it has T')F assigned to it (since

not eventually go into A. When this y goes into)

21

y does not go into A), and since y never enters A this marker is permanently assigned
to y.
Since only finitely many I'* markers may be attached to a given y, the set {; }ic.,

where x; is the y to which marker Fll,f‘ is permanently assigned, must be infinite. m

We now examine Lemmas 5.1-5.12 individually.

The first three of these hold just as before:

Lemma 5.1. At stage s + 1,

(i) if = enters Ry, o # A, then Step 1 or Step 2 applies to o and z;

(ii) if £ moves from S, to Ss then one of the following steps must apply to x:
Step 15 for 0 <j, @ or = = «; Step 25 for 0 such that 6~ = a; or Step 11, Substep C
applying to «, so fs11 <r, «; and in the second two cases = enters S;;

(iii) if z € S, 5 is enumerated in a red set U, at stage s + 1 then Step 1 or Step 4
must apply to z;

(iv) if © € S, is enumerated in a blue set V., then Step 1, Step 3, Step 5, or
Step n must apply to x.

Lemma 5.2 (True Path Lemma) f = liminf, f;.

Lemma 5.3 For all a« € T,
(i) f <t a = Raon =10,
(i) a<, f = Ya="0,
(i) o C f = Yoo =am U{Y5:0 <z a} =*0.

Lemma 5.4: (i) through (iv) hold as before. However, since it is now possible
for an element = to disappear from the game by being enumerated (by an exterior
move) into A (B in the dual lemma), we must slightly modify the statement of (v)

by restricting x to elements of A (B in the dual), as shown:

Lemma 5.4. For every a € T if @« # A and f = a~ then
(I)Y \Yg:@andYang,
11) ()(El<1)[x € Ra ,Ss+1 Ra,S]a

(
(i) (Vo) (354 s) e € 5551 — Sasl
(iv) Uy \ Ya =V, \ Yo =0, and

22

(V) a C f = (Fu,) (Vo € A)(Vs > v,)[r € Roy = (Vt > s)[z € Ruy]] (and
correspondingly with B in the dual).

Lemma 5.5 must be similarly restricted:

Lemma 5.5. Forallz € A
(i) a(r) =gm lim, oz, s) exists, and
(ii) @ is enumerated in at most finitely many r.e. sets U,, ‘77, and hence for

a = ax),
v(o,) =qpm limg v(a, x, s) exists.

(And similarly with B in the dual.)

[A99e)]

Lemma 5.6 is the same as before (though now “n” can include 0):

Lemma 5.6. (i) Step 11 applies infinitely often.
(ii) If the hypotheses of some Step 1-5, n (Step 1-5,) remain satisfied then that

step eventually applies.
The statement of Lemma 5.7 is as before:

Lemma 5.7. If o« C f, a # A, and = a~ then

(i) (Vy <z f)lm(y) =am lim, m(y, s) < ool

(i) m(a@) =af limgym(a, s) = oo,

(ili) £o 2 Mo = Ff,

(iv) &, > M, —.7:;, and

(v) Ea=E0=ELand £, = E0 = EL.

However, the proof requires a slight modification. In the original, the proof of (ii)
required the proof of an additional claim:
Claim 1. Every a-entry (o, 1) on £ ({a, ;) on L) is eventually marked.

The proof of this in the non-dual case must be modified slightly, since it is now
possible for elements to leave the A/B game before they can enter S,. We use Lemma
5.0(iii) to guarantee a supply of elements ({7;}ic,) that remain in A because their

['-tags are never removed.

23

Its second paragraph now reads:

Now 11 € M, since (o, v1) € L. Also M, = .7-";, since C f. Hence we have the
infinite collection of elements {;};c, C A described in Lemma 5.0(iii). By the choice
of s; almost every such z; also satisfies (1.1)—(1.7). Thus, some such z; is moved
to S, under Step 1 at some stage s + 1 > s, and the entry («, ;) is then marked,
contrary to hypothesis. This establishes the claim for L.

(The proof in the dual case need not be altered, because we never enumerate any

element of §1,s into B.)
Lemma 5.8: The statement and proof of this lemma must be modified:

Lemma 5.8. a C f —
(1) Rapo ="YoaNA="YyNA=4;and
(ii) Y, is infinite. (And similarly for the dual lemma, with B for A.)

Proof. By Lemma 5.6(i) Step 11E must eventually put every element 2 € w into Y.
By induction we may assume that Rz ., =" Y3NA =* A and Y} is infinite, for 3 = a~.
By Lemma 5.7 m(a) = oo and m(vy) < oo for all v <;, @ with vy~ = f.

By Lemma 5.3, Y., =" 0. For any x that is in Sg at some stage and is never
moved into Y., by Step 11C, x is eventually moved either into A by Step 0, or into
Sé by Step 11D. (For the dual case, this should read “Z is eventually moved either
into B by Step 8, or into :S’\é by Step 11D.”) For any that is in S} at some stage and
is never moved into Y., by Step 11C, x is eventually moved either into A by Step 0,
or into S, by Step 1 or Step 2. (For the dual case, this should read “z is eventually
moved into §a by Step T or Step /2\, since there is no possibility of & being moved into
B from §é)

Thus, almost every x € Rg not yet in R, that never enters A will eventually enter
Sa- By Lemma 5.4(v) almost every such z will remain in R, forever.

To see that Y, is infinite, observe that since Yj is infinite, and there are only
finitely many [-states, in particular some (-state v; must be well-visited. Then by
Lemma 5.0(ii), we have an infinite collection {z;};c, of elements of vy that never enter

A. By the above reasoning, almost all of these must eventually enter S,. []

24

The proof of the dual case is nearly the same, except that we make the indicated
changes in the second paragraph, and the last paragraph is replaced by the following:
To see that)7& is infinite, observe that since ?g is infinite, infinitely many elements
must enter §g via Step 1 or Step 2. Elements entering §g in a given (-state © by
Step 1 alternate between going into §g and going into :S’\é, while all elements entering
§ﬁ by Step 2 go into :5‘} Thus, infinitely many elements must enter §/§ By the above

reasoning, almost all of these must eventually enter §a.]

The proof of Lemma 5.9 must be modified somewhat, and the modifications differ

slightly in the two cases:

Lemma 5.9. o C f = « is M-consistent.

Proof. Let a C f and f = a~. Assume for a contradiction that « is not M-consistent.
Then e, > eg and there exist vy € My, v1 ¢ My, vy <p vy and vy [€ Mz, By
equation (42) of [6] «v is a terminal node on T so S, = R,. Thus, by Lemma 5.4(v),
for some v,, no x € Su s N A later leaves S,,.

By Lemma 5.7 vy € &,. Thus, by Lemma 5.0(i), we have an infinite set {z;};c, C
A such that

(VZ)(E‘S)[QZ‘l € Sa,s+1 - Sa,s & l/(a, Ti, S+ 1) = 1/0].

Let z be any such x; with the corresponding s > v,,.

None of Steps 0-2 can move = at any stage ¢ > s. Thus, Step 3, must eventually
apply to x at some stage t +1 > s+ 1, moving x from 14 either to v, or to some
other state v] such that vy <p] and V|| € Mg and | ¢ M,. Then « is provably

incorrect at all stages v >t+1,s0 a Z f. [|

The proof of the dual is the same, except that the second paragraph should read
as follows:
By Lemma 5.7, 7y € g’é Take any z € §a,s+1 — §a,s such that v(a,z,s + 1) = 1

and s > v,.

Lemma 5.10 is just as in [6]:

25

Lemma 5.10. If & C f then
(1) My ={0:v e My},
(il) My = Fo = &4, and
(ifi) My = F = &,.
The proof of Lemma 5.11 must be modified much as the proof of Lemma 5.9 was.

Lemma 5.11. a C f = « is R-consistent.

Proof. Assume for a contradiction that o C f and « is not R-consistent. Choose
v € R, such that for all v, € M, 11 £ 1. By equation (42) of [6] « is a terminal
node on T so S, = R,. Thus, by Lemma 5.4(v), for some v,, no z € S, s N A later
leaves S,,.

Now v; € R, € M, = &, by Lemma 5.10. Thus, by Lemma 5.0(i), we have an
infinite set {7;};c, € A such that

(VZ)(HS)[xl S Sa,s—l—l - Ya,s & V(Ol, Ti, S+ 1) = 1/1].

Let x be any such x; with the corresponding s > v,. Note that Step 0 will not apply
to = at any stage t > s+ 1 because = € A.

Because = € S, for all ¢ > s+ 1, neither Step 1 nor Step 2 can apply to z at
any stage t > s + 1. Step 3 cannot apply to z € S, because a is M-consistent
by Lemma 5.9. Furthermore, Step 5 cannot apply to x € S, while v(a,z,t) = 1,
because v; € R, and Ry NB, = 0. But if v(«, z,t) = vy for all ¢ > s then = witnesses
that F'(a™, 1) fails so vy € R, contradicts o C f. Hence, Step 4 applies to & € S,
at some stage t + 1 > s+ 1 such that v; = v(a, z, s) = v(a, x,t), 1y = v, 2, t + 1),
and v; <p 9.

Choose v, such that this happens for infinitely many = € {z;}ic,,. Now 1n € F,
so v, € M, by Lemma 5.10. |

The proof of the dual requires that we change the second paragraph of this proof
to the following:

26

—~

Now 7 € Ry C M, =&, = Aolé by Lemmas 5.10 and 5.7(v), so

~

(3%2)(3s > va)[i € SL oy — Yoy & v(a,@,s+1) = i),

Take any such z. Note that Step 8 will not apply to Z at any stage ¢ > s+ 1 because
ze Sk,
Finally, we have Lemma 5.12, just as before:

Lemma 5.12. If « C f and vy € B, then {z:z €Y, & v(a,z) =11} =* (.

We now reason very much as in the proof of Lemma 5.13 in [6]: Any a C f is
consistent, by Lemmas 5.9, 5.11, and their duals; thus, f is infinite. Now, take any
a C f. Lemma 5.10 and its dual guarantee the correctness of the guesses M, and
M\a. Lemma 5.12 and its dual guarantee the correctness of B, and ga, and R, and
R, are guaranteed to be correct because the (restricted) tree properties hold on our
tree T below p, so N, and /\7a are also guaranteed to be correct.

Thus, just as we had that M, M\, N, and N were correct on f, and f was infinite,

in [6], we now have (abandoning our superscript convention) that MA, ./T/l\ﬁ, N4 and

N'B are correct on f, and f is infinite.

1.8.8 Verifying that G* = §B

It suffices to verify two lemmas:

Lemma 1.3.4 For any node o and a-state vy, L9 contains infinitely many pairs

{a, 1) if and only if v, € GA.

Proof. Such a pair is added to £9 exactly when Step 0 enumerates some x € v, into
A. Thus, £9 contains infinitely many such pairs if and only if infinitely many = € v,

are enumerated into A; that is, if and only if v, € G4.

Lemma 1.3.5 For any node o C f and a-state vy, L9 contains infinitely many pairs
(o, 1) if and only if 1y € GB.

The proof of 1.3.5 will require the following additional lemma:

27

Lemma 1.3.6 For any pair {a,vy) on list L9, if (o, V1) is not eventually marked by

Step 8 then only finitely many elements x are enumerated into J; by Step 3.

Proof. [1.3.6] Suppose that this is not the case for some (a, 7). Then J3;, = Wja.
is an infinite c.e. set. Hence, by promptness of C', for some & and ¢ we have that
& € Wia ar¢ and Cy[& # Cppy[. But then (o, 7) must be marked by (8.2) when

enters J;); at some stage s < t.

Proof. [1.3.5] To show the “if” part of this statement, we observe that

1. We do not move any element 2 in a-state 7y into B except when required to by

some pair (v,7]) in £9 with o C v and 71, = 7|, and that

2. If there are infinitely many such pairs in £9 then there are infinitely many pairs
(o, 1) in L9, since whenever we add one of the former we also add one of the

latter.

To show the “only if” part, suppose that for our given o and vy, £9 contains
infinitely many pairs (o, ;). We will show that all of these pairs are eventually
marked by (8.2), and that therefore infinitely many elements # in state 2 are put by
(8.2) into B, i.e. that v € GB.

Suppose that this is not the case, and take the first pair (o, v;) that never gets

marked. By some stage s,

1. Every pair in £9 before that pair that will ever be marked already has been,

and

2. For any (o/,7') before («,) that will never be marked, all of the (by Lemma

1.3.6) finitely many # that will ever be enumerated into J% , by (8.1) have been.

vl i

Now, since v, € G4 C M# and thus i, € MPB = 505, we have that for infinitely
many stages t +1 > s, some Z is enumerated into 5’2’,31 by Step 1. Neither Step 1
nor Step 2 can apply to & while it remains in §g’§, and since o is M-consistent (by
Lemma 5§) Step 3 cannot apply to z either. Hence eventually each such element, still
in 71, is enumerated into J; by 8.2. But then by Lemma 1.3.6 (o, 1) is eventually

marked, and we have a contradiction.

28
1.3.4 Tree Properties (Unrestricted Version)

We proceed as in §1.3.1, showing that the tree properties of §1.2.2 hold for the o = p

case, from which the rest follow automatically. The first was shown in §1.3.1:
Lemma 1.3.1. M, = F,.

We now show the other two:
Lemma 1.3.7 M\p =Fy\.

Proof. Since A is infinite, G, # 0, so QA/, # (), so B is infinite. Thus, since infinitely
many elements & of Yy enter B = U, (py, {0},0) € F}, so F"% = {{p1, {0},0)} =
ﬂfl = M\f. By Lemma 1.3.2, we also have that /T/l\p§ =]/-:;“E; together, these two

results prove our lemma. []
Lemma 1.3.8 k, = 0 is a correct guess.

Proof. Since both p-states are well-visited on both the w and & sides (by the above
two lemmas), there are no elements of w or & remaining permanently in a non-well-
resided p-state (there being no such state), so 0 is indeed the correct upper bound for

the set of such elements.]

1.3.5 Verifying that B <p C

For any z, if £ € B then & must enter B,,; at some stage s+ 1 by Step 8.2. Then for
some «, v, and i, & enters J; at stage s+1 and enters Wjﬁ‘,i at some staget+1 > s+1
such that Cy1[% # Cpq1)[2. Thus, given C, to determine if # € B we need only
find a stage t + 1 such that Cy,1[Z = C'[Z; we then have that £ € B if and only if
T € By.

1.4 Proof of Theorem 1.1.11

We wish to prove the following:

29

Theorem 1.1.11. If A is low (or has semilow complement) and p.s. and C is p.s.,
then (3B =7 C)[A ~ B].

One way to do this employs Maass’s Theorem 1.1.5, and also the following easy
fact, which we prove in this section (after proving it we discovered it to have been

previously known to Cholak and perhaps others):

Theorem 1.4.1 For any p.s. set C, there exists a p.s. set B with semilow complement

such that B = C.

This gives us Theorem 1.1.11 as a corollary:

Proof. [Theorem 1.1.11.] Take any p.s. set A with semilow complement and any p.s.
set C'. By Theorem 1.4.1, we can find B =7 C such that B is p.s. and has semilow
complement. Then by Theorem 1.1.5, A ~ B. []

(A more direct proof of Theorem 1.1.11, not employing Theorem 1.1.5 or Theo-
rem 1.4.1, might also be constructed. Briefly sketched, this involves combining the
construction used in the proof of Theorem 1.1.6 with a step assigning coding markers
permanently to a-witnesses, coding elements chosen from §g’§ to be enumerated into
By, if |a| = n € Cyyy. The verifications that f is infinite and that M4, MB, NA,
and N'B are correct guesses proceed approximately as before. The enumeration of a-
witnesses into B might seem to raise a potential problem for the proof that G4 = §B
by requiring states to exist in GP that are not matched in G*; this turns out not to
be the case, however, because the prompt simplicity of A requires G4 to equal all
of MZ, for reasons that will be discussed in §2.5.4. We still have B <7 C because
every element entering B is either permitted by an element of C', as before, or is an
a-witness coding an element of C'. Finally, the coding guarantees that C' <r B.)

Theorem 1.4.1 has another corollary, incidentally, which was pointed out by
Cholak:

Corollary 1.4.2 (Cholak) For any two prompt degrees a and b, there exist A € a
and B € b such that A ~ B.

30

Proof. By Theorem 1.4.1 we can find A € a and B € b such that A and B are both
p.s. with semilow complement. Then by Theorem 1.1.5, A ~ B. []

We now prove Theorem 1.4.1:

Proof. [Theorem 1.4.1.]
Take any p.s. set C. Fix some enumeration {Cs} of C. Then by the Promptly
Simple Degree Theorem ([14], p. 284) there exists some computable function p such

that for all s, p(s) > s, and for all e
(We| =00 = (Fz)(3s)[w € We,ars & Cslx # Cpsyl 2]

We now construct B as follows:

Write w as the disjoint union of finite sets Hy, Hy, Ho, ..., where each H,, contains
2n + 1 elements. These will be our coding sets; if n enters C', we will encode this fact
in B by enumerating at least one element of H,, into B. We will in this way guarantee
that C' < B.

We also have the following sets of requirements that our construction will fulfill:
N, : W, \B|=00 = W.NB#

(where by “W,\ B” we mean the elements that either are in W, — B or are enumerated

into W, before being enumerated into B), and

P, : |[We| =00 = (Fx)(3s)[x € W, a s N Bs).

Fulfilling all the negative requirements N, will guarantee that B is semilow; fulfill-
ing all the positive requirements P, will guarantee that B is p.s. (with its promptness
function being the identity function). We order these requirements in a priority list
Py, Ny, P1, N1, P, ...; to fulfill one requirement we are only allowed to injure require-
ments of lower priority. (In this construction, in fact, only positive requirements are

ever injured.)

31

We also define the sequence of markers A.,. In order to fulfill the requirement
N, we may at stage s + 1 put A1 on some element z of W, ;11 — Bs — U, Ei,
and attempt to prohibit x from ever entering B. This prohibition may be injured
in order to fulfill P; for some i < e, forcing A, to be removed from x. However, if
W, \ B is indeed infinite, then eventually some A-prohibition is permanent, and the
requirement P, is fulfilled.

Our construction will also be enumerating, for each e, a c.e. set E,. By the
Slowdown Lemma [14, p. 284] there exists a computable function h such that E, =
Wie for all e, and any element enumerated in £, appears strictly later in W,). We
may assume, by the Recursion Theorem, that we have this function available for our
construction. We also define the speed-up function g(e, s) such that for any e, for any
stage s,

T € Besy1 — Ees <= € Whe)g(e,s)+1 = Whe)g(e,s)-

(Thus g(e, s) > s for all e, s.) These will be used, in conjunction with the p.s. property
of C', to find elements of W, that have permission from C' to enter B, with which we
can fulfill the requirement P, while still keeping B < C.

Finally, in our construction we adopt the usual convention that at any stage s,

there exists at most one e such that W, ;1 # W s, and in that case |[We 411 —W, 5| = 1.
Construction.
Stage s = 0. Let By = (. For all e, let A,y = —1, and E, o = 0.

Stage s+ 1. (In the following, any item not otherwise specified remains the same at

stage s + 1 as at stage s.)

Step 1 (Fulfilling positive and negative requirements). If there exist z and e such
that v € W41 — Wes, v ¢ Uj<eHj, and z ¢ {A,;}j<e, then

Substep 1.1. If requirement P, has not yet been acted on, then

(a) If x € By, then mark requirement N, as having been acted on, and end Step 1.
(b) Let Buyy = Eoy U {2,

(C) If Cg(e,s)+1rx 7£ Cp(g(e,s)+l) fo, then

32

(i) Enumerate x into B;

)
(ii)
)
)

If Aj; = for some j > e, then set A 41 = —1;
(iii) Mark requirement P, as having been acted on; and

(iv) End Step 1.

Substep 1.2. If A, ; = —1, then set A, 11 = .

Step 2 (Coding). If e € ;1 — C,, enumerate into B every element of H, N B, with

no attached A-marker.

(End of Construction.)
Verification. We must verify the following three lemmas:
Lemma 1.4.3 B s promptly simple and semilow.

Proof. Tt suffices to verify by induction that the following hold for all e:
(a) P, is satisfied.
(b) Ae =ag limg A, ; converges.

(c) N, is satisfied.

(a) Suppose for a contradiction that P, is not satisfied. Then W, is infinite. Also, P, is
never marked as having been acted on, for it can only be so marked, by Substep 1.1(a)
or (c), if there is some element = in both W, 1 — W, and Bsy1. Let sp be some
stage such that for all i < e, A; = A; 5. Since {A;}ice U Uige H; is finite, at infinitely
many stages ¢t > so an element x of W, ;41 — W, causes Substep 1.1 to be performed.
No such z is in By, for this would satisfy P,, so each such x is enumerated into E. by
Substep 1.1(b). Thus, £, = W) is infinite. But then for some z,s, x € Wi (e, at s
and C,[x # Cpq)l , and by definition of g this s must equal g(¢') + 1 for some ¢’ such
that = € Ey 4y — Ey. But then x must enter B by Substep 1.1(c) at stage t' + 1, so
P, is satisfied.

(b) Let t be a stage at which every P; with i < e that will ever be acted on already
has been. Then for any t' > ¢, if A,y # —1 then A,y = A.p. Thus, either

33
(i) (V' > t)[Aer = Ner # —1],
(i) (V¢ > t)[Aey = Aey = —1], or
(iii) Ay = —1 and Ac g1 7# Aeyy = Ay = —1 for some ¢y > ¢.

In cases (i) and (ii), Ae = A¢y; in case (iii), Aey = A¢ o1 for all ' > ;5 and therefore

Ae = Ae,t0+1 .

(c) Suppose that W, is infinite, and take ¢ as above. Take any ¢’ > t such that there
exists an x € W pyg — Wep; then if Apy = —1, Acpy1 = x by Substep 1.2. Thus,
case (ii) above cannot hold.

Let s = ¢, if case (iii) holds, and if case (i) holds let s < ' be the earliest stage s
such that A,y = A¢g41 for all ¢ > s. Then A, # A¢s11 # —1, so Substep 1.2 must
act on some x € W, ;1 — W, at Stage s + 1. Then © ¢ B,. Moreover, Substep 1.1
does not put x into any By, with ¢ > s (for then A,y would equal —1), and
neither does Step 2 (since x has a permanently attached A-marker). Hence = ¢ B,

and thus z satisfies P,. []
Lemma 1.4.4 B <t C.

Proof. For any x, we can determine from C'if x € B as follows:

1. Find ¢ such that C;]z = C'[x. Then at any stage t' > ¢, for any 4, g(i,t') > t,
so Cyilx = Clx and therefore x cannot enter B by Step 1.1.

2. Find e such that x € H,. If e € C, find s such that e € C; | — Cj; then z can
only enter B by Step 2 at stage s+ 1. If e ¢ C, = can never enter B by Step 2;

set s = 0. Thus either way x cannot enter B at any stage t' > s+ 1.
Then x € B if and only if © € Bpax{s,s41}- [

Lemma 1.4.5 C <t B.

Proof. For any e, we can determine from B if e € C' as follows: Find a stage s such

that B,N H, = BN H,. We claim that e € C if and only if e € C,. To show the “only

34

if” part of this statement, suppose that e € C', and let £ 4+ 1 be the stage at which e
enters C'.

Substep 1.1 can only move an element of H, into B in acting on requirement
P; for some i < e; thus, at most e elements can be moved in this way. The only
A-markers that can be assigned to elements of H, by Substep 1.2 are the e markers
Aoy ...y Ne—1,5. Thus, at any stage at most 2e of the 2e 4 1 elements of B, are either
marked or in B.

In particular, then, at stage t+1 Step 2 has at least one element of H, to enumerate

into B, so B;y1 N H, # B;N H,. Thus, t +1 < s, s0 e € C. []

CHAPTER 2
NONINVARIANCE

2.1 Introduction

Another topic arising from the study of £-automorphisms is the question of invariance
of properties of the c.e. sets. That is, for any given property P(A) of sets in £, we
may ask whether P(A) is invariant under Aut(€). For instance, computability is an
invariant property; this can be seen by observing that a c.e. set A in £ is computable
if and only if £ also contains A’s complement, so that the property of computability is
definable purely in terms of the lattice £. (Indeed, any property which is £-definable
must also be invariant, and many properties have been proved invariant by showing
that they are £-definable.) On the other hand, completeness turns out to be wildly
noninvariant; Harrington and Soare have shown [6] that any c.e. set in any prompt
degree is automorphic to some set in 0'.

In particular, we can consider the notion of creativity. A set A is said to be

creative if there exists a computable function f such that

(Ve)lWe CA = f(e) € A—W.].

This notion was introduced by Post in 1944, as part of his program to find an in-
complete noncomputable c.e. set; the creative sets, however, turned out all to be
complete, and in fact the creative sets are exactly the m-complete sets. Ever since
that time, creative sets have played an important role in computability theory.

In 1967 Rogers [10, p. 228] raised the question of whether creativity is invariant,
and with the development in the 1970s of machinery for generating automorphisms,
considerable effort was expended in the attempt to show that it is not. The question

was finally settled in the mid-1980s in a surprising way, when Harrington [14, p. 339]

35

36

make the remarkable discovery of an £-definable property exactly characterizing cre-
ative sets, thus showing that creativity was indeed invariant.

This in turn raises the question of whether other, similar properties might be
invariant. In 1957 Shoenfield [11] introduced the notion of quasicreativity (see also
[14, p. 88]). A set A is said to be quasicreative (or g¢-creative) if there exists a

computable function f such that
(Ve)[We € A = Dye) CA & Dyie) £ W

(where {D,}cc. is an effective indexing of the finite sets). Quasicreativity is similar to
creativity in many ways. For instance, quasicreativity guarantees completeness just
as creativity does. Also, just as the creative sets are exactly the m-complete sets, the
g-creative sets are exactly the gq-complete sets (as defined by Shoenfield).

However, unlike creativity, g-creativity is not invariant. In §2.3 we prove the

following theorem:

Theorem 2.1.1 There exist a quasicreative set A and a nonquasicreative low set B

such that A ~ B. (Hence quasicreativity is non-invariant.)

Another related set of properties arises from the consideration of the differences
between creativity and q-creativity. If A is creative, then for any W, in A we can
effectively find a single element of A not contained in W,. If A is quasicreative, then
for any W, in A we can effectively find a finite set (of some arbitrary size) of elements
of A that is not entirely contained in W,. Suppose, then, that we consider a notion in
between, in which what we effectively find is a finite set with some particular bound
on its size.

We thus introduce, for every n, the property of n-creativity. A set A is said to be

n-creative if there exists a computable function f such that
(Ve)[We €A = (IDpl <n & Dyey CA & Dyiey £ We)].

We have thereby introduced infinitely many different properties. In §2.2.2 we show
that they are indeed all distinct, by proving the following theorem:

37

Theorem 2.1.2 For any n, m, if n < m then there exists a c.e. set A that is m-

creative but not n-creative.

We thus have a chain of proper implications
) . = .= . =)
Creative = 1-creative 2-creative 3-creative 4-creative ...
& & &

In addition, while n-creativity implies g-creativity for any n, we will also show, in
§2.2.3, that the g-creative sets are not just the union of the n-creative sets over all

n € w:

Theorem 2.1.3 There exists a c.e. set A such that
1. A is quasicreative, and
2. A 1is not n-creative for any n.

We may then ask whether n-creativity is invariant. The 1-creative sets are exactly
the creative sets, so 1-creativity is certainly invariant. However, it turns out that this

is not true for any other value of n. In §2.3 we prove:

Theorem 2.1.4 For all n > 2, there exist an n-creative set A and a non-n-creative

low set B such that A ~ B. (Hence n-creativity is noninvariant for all n > 2.)

Another notion related to creativity is subcreativity. A c.e. set A is said to be

subcreative if there exists a computable function A such that
(Ve)[[WeNA| <oo = AC Whie) € AU We].

This notion was introduced by Blum in 1973 [1], and has applications to complexity
theory. As with creative sets, g-creative sets, and n-creative sets, all subcreative sets
are complete. And as with all but the first, we show (in §2.4) that subcreativity is

noninvariant:

Theorem 2.1.5 There exist a subcreative set B and a nonsubcreative low set A such

that A ~ B. (Hence subcreativity is noninvariant.)

38

One final property we consider arises from the consideration of the orbits of simple
sets. In 1996, Cholak [3] answered a question of Herrmann by showing that every
simple set is automorphic to some hypersimple set, and indeed every simple set is
automorphic to some dense simple set. It is reasonable to examine other notions of
simplicity in this connection. For example, there is the notion of an effectively simple
set, which arose (like the notion of a creative set) from Post’s seminal 1944 paper [8].
We may ask whether every simple set is automorphic to some effectively simple set.
This turns out not to be the case; Harrington and Soare [5] exhibited a simple set that
was not automorphic to any complete set, and (as with creative sets) all effectively
simple sets are complete.

Jockusch then raised the following question: If we replace simplicity with the
stronger property of prompt simplicity, does this additional power enable us to get

the desired result? We show in §2.5 that it does.

Theorem 2.1.6 For any promptly simple set A there exists an effectively simple set
B such that A ~ B.

This gives us, as a corollary, one final noninvariance result:
Corollary 2.1.7 Effective simplicity is noninvariant.

Proof. Take any low promptly simple set A, and construct B as in Theorem 2.1.6.
Then A ~ B, A is incomplete and therefore not effectively simple, and B is effectively

simple. []

2.2 Distinctness of n-creativity Notions

2.2.1 Another Definition of n-creative

We shall find it useful for our exposition to have another, equivalent, definition of

n-creativity:

39

Theorem 2.2.1 The following are equivalent:

(a) (3 comp f)(Ve)[W. CA = (|Dy| <n & Dyey CA & Dyiey € We)]
(that is, A is n-creative).

(b) (3 comp f)(Ve)[We € A = (|Dye)| =n & Do) CA & Dyiey £ We)].

Proof. Clearly, (b) implies (a). Now, suppose that (a) holds for some A. Since A is n-
creative, and therefore noncomputable, A is infinite. Select n elements {y1, Y2, ..., Y }

in A. Then for any i, define the computable function p by

. _{ (uR)[ID; U {y;}i—il = n] if |D;| < m,
p(i) =

0 otherwise.

Let f be a computable function by which A satisfies (a), and define the computable

function f’ so that for all 1,
Dysy = Dy U {y; 327,

Then A satisfies (b) by f'. n

2.2.2 Proof of Theorem 2.1.2

We now prove
Theorem 2.1.2. For any n, m, if n < m then there exists a c.e. set A that is

m-creative but not n-creative.

Proof. Given n < m, we will be constructing a c.e. set A that is m-creative but not
n-creative. To guarantee the former, our construction will enumerate elements into

A in order to satisfy all of the positive requirements

P, :W,C A = [Dg(e) CA& Dg(e) g We],

40

where ¢ is a computable function such that
Dy(ey = {me,me + 1,me + 2,...,me + (m — 1)}

(so that |Dy)| = m for all e).
To guarantee the latter, our construction will satisfy all of the negative require-

ments

N, : Fy[W, CA &
0) (ve(y)T V |Dpyl #n V Dy LAV
(1) Dcpe(y) C Wy)]

That is, we will attempt to show that for no e can ¢, serve as the computable function
f in the alternative definition of n-creativity given in §2.2.1. In order to meet the
requirement N,, we will use the Recursion Theorem to find some y for which either
clause (0) or clause (1) holds. If clause (0) holds, W, will be the empty set, and
no action need be taken to guarantee that W, C A. If it appears that clause (1)
holds, then W, will equal D,,(,), and we must attempt to restrain the elements of
W, from entering A. A restraint may be injured finitely often, under the following

circumstances:

1. When we are called upon to meet some positive requirement P; by putting an
element of D,(;) into A, it may be that every possible choice would violate some
existing restraint. In this case, we preserve the restraint with highest priority,

and may injure any or all of the others.

2. Whenever a new restraint added in order to meet some /V;, all existing restraints

for N,, e > i, are considered to be injured.
We need the following machinery for this construction:

1. We have two recursive functions a(e) and n(e) defined so that the negative
requirement NN,, if satisfied, will guarantee that A is not n(e)-creative via func-

tion ,(e). For the present construction, a(e) = e and n(e) = n for all e. In

41

the next section, in the proof of Theorem 2.1.3, the definition of our negative
requirements will be slightly different, and a(e) and n(e) will be defined so that
e = (a(e),n(e)) for all e.

2. At every stage s, we have the function p,;. For any e, p,(e) is the value of y that

is being used at stage s to attempt to guarantee N,.

3. At every stage s we have the binary function f;. For any e, f(e) equals 0 if
we are attempting to satisfy clause (0) of N, 1 if we are attempting to satisfy
clause (1). If f,(e) = 0, then we take no action to restrain any element of W,
from entering A, for W, (. currently appears to be 0. If f;(e) = 1, then W
equals the n-element set Dy, (e)), and we must attempt to restrain all n of

those elements from entering A.

Each ps(e) and fs(e) eventually achieves a permanent value. We denote limg ps by p
and limg f; by f.
We may now proceed to describe our construction. There will be two additional

complexities in our exposition:

1. If an injury occurs at level e at some stage s + 1, for every ¢ > e we set fy,1(%)
to 0, but determining what value p, (i) will take requires a more involved cal-
culation. For ease of explanation, then, we describe this p-initializing procedure
(which is also used to start off our overall construction) separately from the

main part of the construction.

2. When we are choosing a new value of ps1(e) at some stage s+1, we must choose
it so that if there is no future injury at level e, Wy will equal 0 if clause
(0) holds throughout the rest of our construction, and Dy, () otherwise.
This requires that we be able to speak of a hypothetical continuation of our
construction, whose “program code” is used as part of a calculation for p,4(e)
by the Recursion Theorem. In order to avoid confusing this continuation with

the real construction, the names A’, f’, and p" are used for its machinery.

This means that both the main part and the p-initalization procedure of our

construction must be described in more generality than usual. We must be able

42

to start at any given starting state sy + 1 (so that the same description can be
used for a hypothetical continuation that starts at state sq + 1), and we must
be able to perform a portion of the construction “with regard to” either A, f,
and p or A', f', and p'.

Then to start everything off, we just initialize everything and perform “the main
part of the construction at stage 1, with regard to A, f, and p,” and the A thus

constructed is the A we want.

Construction.
p-Initialization. To p-initialize from e at stage s with regard to A, f, and p, we

proceed inductively on all ¢ > e. For each 7 in turn:

1. Define the computable function h; so that for every j, h;(j) is an index of the
c.e. set U defined by the following procedure:

(a) Let A, = A and f! = fs.
(b) Define p/, by setting p.[i = ps[i and pl(i) = j, and p-initializing from i + 1
at stage s with regard to A’, f’, and p'.

(c) Perform the main part of the construction at stage s + 1 with regard to

A', f', and p' until the first stage t + 1 such that
(a) N; is injured at stage t + 1, or
(b) fin () =1.
(d) In case (a), let U = (). In case (b), where ¢t + 1 = 2¢ + 2 we have that

Qa(e),g+1(J) L = some k; let U = Dy. (And if no such ¢ 4 1 is ever found,

nothing is ever enumerated into U, so U = ().)

2. Set psy1(i) equal to a fixed point of h; (found by the Recursion Theorem).

Main Part of the Construction. To perform the main part of the construction at stage
so with regard to A, f, and p, perform the following procedure for all stages s + 1

starting with sg:

43

Stage s + 1 = 2¢ + 1 (Changing strategies for guaranteeing N,). If @q(e)q(ps(€)) T,
Soa(e),q-kl(ps(@))\l/: ka |Dk| = 7’L(€), and Dk: g Zsa then

1. Set fs+1(e) = 17
2. For all © > e, mark N; as injured at stage s + 1.

3. For all i > e, set fsy1(i) = 0.

4. p-Initialize from e 4+ 1 at stage s + 1 with regard to A, f, and p.

Stage s+ 1 = 2¢ + 2 (Guaranteeing P.). If Dy C A, Do ¢ W, and Dyey €
We,q-i—l; then

1. If there exists some
7 € Doy = ([Doy wiatvs) * a1 (ps(D)) 4 & faga (i) =1},

then enumerate the least such x into A,,;, and end Stage 2¢q + 2.

2. Otherwise, let

J= (/ﬂ)[goa(i),qul(pS(i))i & f2q+1(i) =1& Dg(e) N D%(i),q+1(11s(i)) # m

3. If there is some = in Dye) — Dy, 11 (ps(5))» then

a) Enumerate the least such z into A, .

For all 7+ > 7, mark N; as injured at stage s + 1.

(
(b

)
)
(c) Forall i > j, set fsy1(i) = 0.
(d) p-Initialize from j + 1 at stage s + 1 with regard to A, f, and p.
(e) End Stage 2¢ + 2.

4. Otherwise (Note: this never happens in the construction for Theorem 2.1.2, but

it may in the construction for Theorem 2.1.3):

44

(a) Enumerate the least element of Dy into A, 4
(b) For all i > j, mark NNV; as injured at stage s + 1.

(
(

)
)

c) For all i > j, set fsy1(i) = 0.

d) p-Initialize from j at stage s + 1 with regard to A, f, and p.
)

(e) End Stage 2q + 2.

Overall Construction of A.
1. Let Ay = 0.
2. For all e, let fy(e) = 0.
3. p-initialize from 0 at stage 0 with regard to A, f, and p.

4. Perform the main part of the construction at stage 1 with regard to A, f, and
p. The resulting A is the non-m-creative, n-creative set we are attempting to

construct.

(End of Construction.)
Verification. We must verify the following two lemmas:
Lemma 2.2.2 Fvery P, is satisfied.

Proof. Take any e. If Dy.y € W, then no element of Dy is ever put into A at any
stage 2¢+2, 80 Dy(,) C A If Dy(ey € We, then for the least q such that Dy € W, 41,
an element of Dy is put into A at stage 2¢ + 2, so W, 7 A. So either way P, is

satisfied. -
Lemma 2.2.3 Fvery N, is satisfied.

Proof. We will prove by induction that the following hold for every e:

1. N, is marked as injured only finitely many times.

2. f(e) —dfn 11rns fs(e)\l/

45
3. p(e) —dfn 11rns ps(e)i .
4. N, is satisfied.

Take any e and assume that the above hold true for all 7 < e. Let ¢ be a state by
which, for all 7 < e,

(a) N; will never again be marked as injured,
(b) f(¢) and p(i) have converged, and
(¢) @a@i)(p(7)) has converged if it ever will.

Then by (b) neither f,(e) nor ps(e) can change, nor can N, be marked as injured, at
any stage 2qg +1 > ¢.

Now, take r so that for every i < e such that @) (p(i)) converges, Dy, . (i) C
U.,<, Dg(z)- Take t' > ¢ such that A, NU,., Dgxy = AN U, Dy(z)- Suppose that
at some stage 2¢ + 2 > t', an element x enters A from some D). Then 2z > 7, so

Dyizy M Dy, p(iyy = 0 for all i < e, so if = enters A by clause 3 or 4 then j > e. Thus,

(i) If = enters A by clause 3, N, is not marked as injured at stage 2q+2, foqi2(€) =
fog+1(e), and pagia(€) = pagia(e).

(ii) If = enters A by clause 4, then j # e, for if j = e then [Dy, . . (agrie)n | =

n(e) =n, and so Dy;) — D y) # 0 because |Dy(,y| = m > n. Hence

Pa(e),q+1(P2q+1(e
j > e, so again N, is not marked as injured at stage 2q+2, faogi2(€) = fagt1(e),

and p2q+2(6) = p2q+1(6)-

(iii) If = enters A by clause 1, then no negative requirements are marked as injured

and neither f nor p changes.

Hence by stage ¢’ > ¢, N, will never again be injured (at any stage > t', whether
of the form 2¢+1 or 2¢+2) and f(e) and p(e) have converged, so the first three parts
of our statement are proved.

To show (d), let s be 0 if N, is never injured, or the last stage at which N, is

injured otherwise. Then f;(e) = 0, and ps(e) is some fixed point of g, as described

46

in the p-initialization procedure. Let j = ps(e); then W; = W), ;). Now, W () is
determined by the results of running the main part of the construction at s + 1 on
Al = A, fl = fs, and p), defined by setting pl[e = psle, pi(e) = j = ps(e), and
running the p-initialization procedure from e 4+ 1 at stage s with regard to p', f’, and
A'. Since p,(7) for all i > e will in fact be determined by running the p-initialization
procedure from e + 1 at stage s with regard to p, f and A, and the real construction
will then procede by running the main part of the construction at s + 1 on Ay, f,
and py, these results will be the same as those of the real construction.

In the real construction, N, will never again be injured. Thus, W; = W), ;) =

(8) Dy, o000y if at some subsequent stage 2g + 1 fag11(e) becomes 1, and

(b) W; = Wy, ;) = 0 otherwise.

In case (a), Dy, .,() € Aggi1, and no element of W; = Dy, .,y Will ever enter A
because N, will never again be injured. Thus, D, ;) € W; C A, and requirement
N, is indeed satisfied, via clause (1).

In case (b), fag+1(€) never becomes 1 at any subsequent stage 2¢+ 1. Thus, either
Pae)(J) T, or [Dy, . ¢ # nle), or at every stage 2¢' + 1 after pq)(j) converges
Dy, (i) € Azq41 and therefore Dy, ;) € A. Thus, clause (0) of N, must hold, and
since W; =0 C A, N, is satisfied. [

Pa(e)

2.2.8 Proof of Theorem 2.1.3

The proof of
Theorem 2.1.3. There exists a c.e. set A such that

1. A is quasicreative, and
2. A 1is not n-creative for any n.
is very similar. The only changes that must be made are the following:

1. We will be constructing a set A that is q-creative, but not n-creative for any n.

Thus, we must alter our positive requirements so that they no longer guarantee

47

n-creativity for some particular n, but still guarantee g-creativity. In fact, we

will keep the wording of the requirements the same:
P, :W,C A = [Dg(e) CA& Dg(e) g We],

but will change the definition of the function g employed. We instead take g to

be a computable function such that:

(a) (Ve)[|Dyey| = e+ 1], and

(b) (Vi,j)[i #J == Dy N Dyjy = 0.

. We need to show that A is not n-creative, not just for one particular n, but
for all n > 1. We thus must expand our collection of negative requirements to
cover every possible n-creativity function ¢, for every n. We therefore employ
some suitable pairing function to indentify w with w x (w —{0}), and define our

negative requirements as follows:

Nany : Fy)W, €A &
(0) (o)t V |Dyuyl #n V Dy, ¢ A vV
(1) Dy, € Wy)]

That is, we will attempt to show that for no e = (a, n) can ¢, serve as the com-

putable function f in the alternative definition of n-creativity given in §2.2.1.

. Having changed our definition of N,, we must change our defintion of the two
recursive functions a(e) and n(e) so that the negative requirement N, if satis-
fied, still guarantees that A is not n(e)-creative via function ¢,). We define

these functions so that where e = (a,n), a(e) = a and n(e) = n.

. The description of the construction is now exactly as before.

However, note that Clause 4 of Stage 2¢ + 2 may now come into play; it is

now possible that |Dye| = e+ 1 < n(j) = |D (ns(j))| and it is therefore

Pa(j),q+1

possible that Dye) — Dy, iy 11 (0s () = (). Fortunately, for any given j there are

48

only finitely many e for which this can occur, so N; will only be injured by

Clause 4 finitely many times.

5. To reflect the fact that Clause 4 may now come into play, we must alter our
verification slightly. The third paragraph of the proof of Lemma 2.2.3 should

now read:

Now, take 7 > n(e) so that for every i < e such that puq)(p(i)) converges,
Dipa(i)(P(i)) C Uz<r Dg(z). Take t' > t such that AtﬂU Dg(z) = AﬂUz<r Dg(z).

Suppose that at some stage 2¢+2 > t', an element x enters A from some D).

z<r

Then 2z > 7, 50 Dy(zy N Dy, iy = 0 for all i < e, so if x enters A by clause 3 or
4 then j > e. Thus,

(a) If = enters A by clause 3, N, is not marked as injured at stage 2q+2,
fogra(e) = fagr1(€), and pagia(e) = pagri(e).

(b) If x enters A by clause 4, then j # e, for if j = e then |D
n(e), and so Dyc,y — D

n(e). Hence j > e, so again N, is not marked as injured at stage 2q+2,

Pa(e),q+1P2q+1(e)N | =
) 7 0 because |Dy,)| = z+1> 741>

Lpa(e),q+l(p2q+l (e

faq+2(€) = fagi1(€), and pagya(e) = pagr1(e).
(c) If = enters A by clause 1, then no negative requirements are marked as

injured and neither f nor p changes.

The rest of the verification goes through exactly as in the proof of Theorem 2.1.2.

2.3 Noninvariance of Quasicreativity and n-creativity

Both

Theorem 2.1.1. There exist a quasicreative set A and a nonquasicreative low set B

such that A ~ B. (Hence quasicreativity is noninvariant.)
and

Theorem 2.1.4. For all n > 2, there exist an n-creative set A and a non-n-creative

low set B such that A ~ B. (Hence n-creativity is noninvariant for all n > 2.)

49

follow as corollaries of the following lemma:
Lemma 2.3.1 There exists a coinfinite 2-creative set A with semilow complement.

Proof. [Theorems 2.1.1 and 2.1.4.] Let A be as in Lemma 2.3.1, and take any p.s.
low set C'. Then by Theorem 1.1.6, there exists a c.e. set B <t C with A ~ B.
Then A is quasicreative, and n-creative for all n > 2, while B is nonquasicreative and

non-n-creative for all n (since B is low, and thus not complete).

Proof. [Lemma 2.3.1.]
Take a computable function f such that for all e, |Dy()| = {2e,2e+ 1}. In order

to make A 2-creative, will be meeting each of the requirements
P, :W,C A = [Df(e) CA& Df(e) g We]

by putting an element of Dy into A whenever W, C A has grown to include all of
Dy (e)-

In order to make A semilow, we will also be meeting the negative requirements
N, : W\ Al =00 = W, NA#.

This will require that we keep elements out of A. As in the proof of Theorem 1.4.1,
we will employ for each e the marker A, s, which we attach to an element of W, that
we wish to keep out of A. Our attempt to thus satisfy requirement N, may be injured
in the process of preserving the truth of N; for any 7 < e, but this can only result in
finitely many injuries, so eventually each marker must come to rest permanently on
some element of W, N A.

We construct A in stages as follows:
Construction.
Stage s = 0. Let Ay = (), and let A,o = —1 for all e.
Stage s + 1.

Step 1 (Guaranteeing P.). If

50

1. Dyey € W,
2. Dye) € We 541, and
3. Wee1 C A4,

then

1. If at least one element of Dy has no attached A-marker, then let z be that
element if there is only one such, or the lower of the two (i.e., 2¢e) if there are

two. Let Ag11 = As U {z}.

2. If both elements of D) bear one or more markers, then for the least 7 such
that A;, is attached to one element of Dy, let x be the element of Dy that
does not bear the marker A; ;. Let A,y = A; U {z}, and for all j such that
Njg=ux,let Aj 1 = —1.

Step 2 (Guaranteeing N,). If for some z
Lo € Weop — We,
2. x € A, and
3. Ay =—1,

then let A, 541 = .

(End of construction.)
Verification. We now demonstrate the following three lemmas:
Lemma 2.3.2 A is coinfinite.

Proof. All Dy are disjoint, and no more than one element of any Dy is put into A
by Step 1, because if Dy NA; # () then it cannot be the case that Dy C We 41 C A.

Thus, A contains at least one element from each Dy ey []

51

Lemma 2.3.3 A is 2-creative.

Proof. If Dyey € We, then at the first stage s+1 when D) C W, ;1 either W, Q A
or we put an element of Dy into A, so in either case W, 4 ,(Z A and therefore
W, ¢ A. Also, since no element of Dy is put into A unless Dyy C W, o1, if
Dyey ¢ A then W, ¢ A. Thus, if W, C A, we must have that Dy,y ¢ W, and
Dy C A n

Lemma 2.3.4 A is semilow.

Proof. 1t suffices to verify by induction that the following hold for all e:
1. A¢ =g limg A, 5 converges.

2. N, is satisfied.

1. Suppose that A, does not converge. Then Step 1 and Step 2 must each act on
A, s at infinitely many stages s. Let sy be some stage such that for all ¢ < e,
A=A 4. Let

S =Dy : (3i < e)[A; € Dyyl}-

Then for some stage s; > sg, We s, NS = W,.NS. Take s, > s; such that Step 1
acts on A, , at stage s +1; then A, 5,41 = —1. Let £+ 1 be the next stage after
sy + 1 at which Step 2 acts on A.;. Then A.;41 = 2 where x € W, ;11 — We .
Then since t + 1 > sg, © ¢ S. Let t' + 1 be the next stage after ¢ + 1 at which
Step 1 acts on A.y. Since z is tagged by the marker A,y 41, can only be
enumerated into A if it is in the same Dy(;) as some A; .1, 7 < e. But then

x € S, and we get a contradiction.

2. By the above, we know that A, converges. Suppose that |W, \ A| = co. Then
for any stage ¢ such that A.; = —1, let ¢ + 1 be the first stage > ¢t for which
there exists x € Wepy1 — Wy — Ap; then by Step 2, A1 = # —1. Thus,

A, does not converge to —1.

52

Let s + 1 be the first stage such that A, 41 = A.. Then A, 41 = some x €
Wes11—Wes—As, and x never enters A at any subsequent stage, so x € W,NA.
Thus if |W, \ A] = co then W, N A # 0. u

2.4 Noninvariance of Subcreativity

2.4.1 Proof via Theorem 2.4.1

In order to prove

Theorem 2.1.5. There exist a subcreative set B and a nonsubereative low set A such

that A ~ B. (Hence subcreativity is noninvariant.)

we will use the Prompt Coding Theorem of [6] to prove the following theorem, of

which Theorem 2.1.5 is a corollary:

Theorem 2.4.1 For any coinfinite prompt set A with semilow complement, there

exists a subcreative set B such that A ~ B.

Proof. [Theorem 2.1.5.] Take A a low prompt set (so A is incomplete and thus

nonsubcreative), and construct B as in Theorem 2.4.1. |

2.4.2 Intuition and Machinery

The proof employs similar techniques to the proof in [6] that every prompt c.e. set is
automorphic to a complete set. That is, for every « on the true path we will have a
a-state U containing an element which BLUE can, if desired, place immediately into
B; we will use these elements to ensure the subcreativity of B. The promptness of A
will guarantee that ﬁa, the collection of such states for a given «, is always nonempty
when « is on the true path.

In order for ¥ to be suitable, it must have the following properties:

1. BLUE must be allowed to move a desired element from 7 directly into B.

53

2. 7 must be RED-maximal, that is, no move by RED can take an element out
of 7. Then BLUE can keep a chosen coding element in # until BLUE needs to

move it into B.

3. 7 must be in I/C\a, that is, 7 must be well-resided, to guarantee a supply of coding

elements.

In order for these conditions to be met, we need for the corresponding conditions

to be true on the A side:

1. RED must be allowed to move elements of v directly into A; that is, we need
v to be an element of the set W# defined, as in [6], to consist of all v; =

(a, 01, 71) € M, such that

0%0’1 & (3V2:<Oé,0'2,7'2>)[1/26./\/la & o1 C 09 & 060’2].

2. v must be BLUE-maximal.

3. v must be in /C,.

We therefore define D,, as in [6] to be the set of all a-states v that appear to be

thus suitable:

Definition 2.4.2 Let D, be the set of all v; = («, 01, 7) such that v, € M, and
1. v, € WF,
2. =(Jvy € M,) [<p 1], and
3. vy ¢ N,.

Then the promptness of A guarantees that D, # 0, for all « C f. Thus, when we
define D, to be {v :v € D,}, we are guaranteed the existence of at least one state
v e ﬁa to give us a supply of suitable coding elements. The coding elements for a
given o will be enumerated into a d.r.e. set L, s, from which they will be removed

when they either are used or need to be discarded for other reasons. They are also

54

tagged in pairs with markers ¢, ;, and gj’a,i,s, for all 4 up to some computable bound
g(c, s) that depends on the particular construction being used. (In our construction,
as in that of [6, §10], g(«, s) will always equal 1, so we will have at most one such
pair of tagged elements for any given « at any time; in fact, unlike the construction
in [6], our construction will only actually use the first element of any such pair.)

We then get the Prompt Coding Theorem (Theorem 10.8 of [6]), which, stated in

full, is as follows:

Theorem 2.4.3 (Prompt Coding Theorem, Harrington-Soare) Let A = U,
be a given prompt set, and let B = ﬁp where p = f[1. Let g(«,s) be a recursive
function (to be used in Step /7\) Perform the basic coding construction consisting of
Steps 1-6, 11, 1-5, and 7 of [6, §10], and possibly with additional Stepsn, 9 < n < 11,
defined later, which satisfy the conditions (P1)-(P3):

(]31) If a is R -inconsistent or M-inconsistent then Step n does not apply to .
If « 1s D-inconsistent then Step n applies to o only if n = 6.

(132) Step n cannot enumerate T in any red set V,. If Step n at stage s + 1
enumerates T in a blue set ﬁa, then T € ﬁa,s, and this enumeration must be a-legal,

e, v(a,z,s+1) € M\a.

(133) Step N cannot move T from §a to :5'\7 for a # v, or from §é to §2, but
can only appoint some T already in §g as an a-witness, and can later cancel T as an

a-witness and simultaneously move & from S° to S!.

Then

(i) (Vy C f)[liminf, g(v,s) < oo] = A is AS-automorphic to B.

In addition, if the Steps n, 9 < n < 11, satisfy the following conditions (@1)7(@4)
then conclusions (i), (iii), (vii), and (viii) hold.
(@1} Step n may not put any element T into the witness set /I:a.

(@2) Step n may not remove any element & from the witness set /I:a unless simul-

taneously & is enumerated in B.

%)

(@3) If Step n puts T into B,.; — By then & € /[:a,s-

(@4) Ifz € :S'\g’s then Step n may not enumerate T € ﬁa’s+1 - ﬁa,s for any blue
set ﬁa unless stmultaneously z is enumerated in B.

Assume a C f, aw# X. Then for all & and s and all 1 > 1,

(ii) Lo, C §g}s, and Ly is a d.r.c. set;

(iii) [#€ (S0, —B,) & v(a,i,s) =0 €Dy = v(a,d,s+1)=ir;

(vii) @ <liminfs g(a,s) = (3%°5)[Uaisd & v(@,Jayis:) € Da;

(viii) [i <liminf; g(a,s) & (3°°9)[Jais € Bsy1 — Bs]] = [limg §q,5 < 00].

In addition, if Steps n, 9 < n < 11, satisfy the following condition (@5} then
conclusion (iz) holds for a and i as above.

(@5) Step i may not put g, ; , into By — By, and may put s into By — By
only if Ug,; is defined.

(ir) i < liminf, g(o,s) = [(a.e. 9)[faisl] & (3% Daisl & Gois]l

In [6, §10], the elements supplied by the states in ﬁa were used for coding K into
B. We will be using them to fulfill the following requirements:

Pe:|WeﬂB|<OO - [BCWh(e)gBUWe].

for some h which will be defined by our construction.

We employ the following machinery:
1. We have all of the machinery of [6, §10].

2. In the course of our contruction, we will enumerate a collection of c.e. sets
{Ec}ecw- We will thus have a computable function A such that W) = E. U B

for all e; this is the h used in the statement of our requirements P,.

3. Where we identify w with w x w by a suitable pairing function, we have the

function [defined by I(a) = e if |a| = (e, y) for some y.

56

2.4.8 Construction

We first let g(«, s) = 1 for all «v, s. (That is, only one marker pair will be employed
at any node a.) We then employ a modified version of the construction used in |6,

§10] as follows:
Step 1-6, 1-5. As in [6, §10].

Step 7. Asin (6, §10], with an added accounting step that does not affect any other
part of the construction, and therefore does not affect the applicability of the Prompt
Coding Theorem:

(7a) If we have just assigned the marker Ua,1,5+1 tO some &, then enumerate & into
El(a)-

Steps 9 and 10 are somewhat modified versions of the corresponding steps in
[6, §10]. (Note that since Step 7 only assigns a marker Uan if « is ﬂ—consistent,
ﬁ—consistent, and ﬁ—consistent, Steps 9 and 10 also only apply to nodes that are
consistent in all three senses.)

Step 9 puts the elements of E, into B when they go into W,, in order to satisfy

requirement, P,:

Step 9. Suppose la| = 5%, Jau1s4 = &, and v(a,z,s) = »y. If & € W, for some e,
perform the action of Step 8 of 6, §7.2] on & at stage s+1. (Namely, choose the least
such pair (o,). Let Fo() = 0o = (0,3, 7). Enumerate # in ﬁ(;,sﬂ for all 6 C «
such that é; € 0. Since & € B, — B, move & from §2 to :SE, and let £ be cancelled

as an a-witness.)

Step 10 puts witnesses that will be deactivated into B:

Step 10. Suppose o154 = 2, and that at stage s+1 either:

(i) & will be removed from §2 (and from L,) because Step 11C applies to a (i.e.,
fs41 <p @); or

(ii) & will be pulled from §g to some §5, B <1, «, under Step /1\5.

Then perform the action of Step 8 of 6, §7.2] on Z, as in Step 9 above. (Note that
Z will be cancelled as an a-witness at stage s+1 under Step 11C or Step /1\5 (1.12), as

will whatever element ', if any, is tagged with ¢, ,.)

S7

Substep 11A-F. This is the same as in [6].

2.4.4 Verification

We first note that steps 9 and 10 satisfy all the conditions (P1-P3) and (Q1-Q4).
Thus, conclusions (i), (ii), (iii), (vii), and (viii) hold. In particular, since (i) holds,
the A and B we construct in this way are automorphic. We thus need only verify
that B is subcreative; that is, that all the requirements P, are met.

Take any e such that [W, N B| < co. Then Steps 9 and 10 put only finitely many
elements of E, into B. Take any « such that [(a) = e. Then every element that
ever bears the tag 7,1 is in £, so only finitely many such elements are enumerated
into B. Thus, by conclusion (viii) for i = 1, we have that lim, 9,1, < oco. Also,
by conclusion (vii) there are infinitely many s such that 9, J. Hence g, must
eventually be attached permanently to some 2, which therefore never enters B. Since
T € E. C Wy(e), and B C Wy, then, we have that B C Wy).

To show that W) C W,., we note that any element enumerated into E, gets
an attached g-marker simultaneously (in Step ?), any element of F, that loses its
jg-marker is enumerated into B (in Step 9 or 10), and any element with an attached §-
marker that is enumerated into W, is enumerated into B. Thus any element of F, that
is in W, must also be in B, so E, C B U W, and therefore Whey=BUE, C BU W..

Thus, P, is indeed satisfied, and we are done.

2.5 Effective Simplicity

2.5.1 Intuition and Machinery

To prove

Theorem 2.1.6. For any promptly simple set A there exists an effectively simple set
B such that A ~ B.

we will again, as in the proof of Theorem 1.1.6, employ a version of the Harrington-

Soare construction restricted to A and B. However, the modifications we make to

58

the construction of [6] will be different this time, in the following ways:

1. We no longer have that A is semilow, so we can no longer control the enumer-
ation of A, with the help of I'-markers. Therefore, our construction will no
longer have a step that challenges elements x before they change state in any

way and assigns them such markers.

2. Because we need no longer challenge elements x before they change state, we
can now put the exterior step that enumerates elements into A, where it more
naturally goes, as part of Step 4 (that is, with the rest of the moves forced by
RED).

3. Also, because we no longer have control of the enumeration into Ay, we will not
be able to guarantee the correspondence of G4 and Q\B by the technique we were
using previously; that is, using Step 0 to generate our list £9 to tell us what
elements to enumerate into B for covering purposes. However, it will turn out
that the prompt simplicity of A guarantees that G4 = M = MP on the true
path. Therefore, we can generate a covering list £9 purely from ME, and on

the true path it will be correct.

4. Finally, our lack of control over the enumeration into A, means that we cannot
guarantee R = gf by the technique of our proof of Theorem 1.1.6 (which was
the restriction of the technique used in [6]; that is, ensuring that any o C f
is RZ—Consistent). However, it will turn out that the prompt simplicity of A
gives us a much more direct solution: G4 = MA = MPB on the true path, so
there cannot be a problem with BLUE having to empty a state but having no
state to send its elements to; it can simply enumerate them into Bs. (However,
we will still be guaranteeing that l’:)’oéZ = 7€§ by ensuring that any a C f is

RB-consistent.)

5. To guarantee that B is effectively simple, we will satisfy the requirement

P, :|W,]>e = Wegg

59

for every e by always enumerating at least one element of any given W, into B
if [W,| > e. We can no longer rely on using the elements in some S%5 for this
purpose, because the finite collection of elements we have to chose from may not
include any elements in any §g’§; we may instead have to enumerate elements
from anywhere in our tree. We will therefore employ a system of [-markers to
make sure that we choose elements whose enumeration will not interfere with
our construction. Specifically, markers will be attached (in Step 0) to elements
entering a node « in any state in ﬁf, to help us to choose elements that will not

interfere with the demonstration that any node o C f must be R B_consistent.

A version of Step 8 is still used to enumerate elements of :S'\gj into B for covering
purposes, but an element no longer needs permission from any set C' to enter
B. This step has also been moved, for technical reasons, to a position between

Steps 3 and Z, and has correspondingly been renumbered “Step 7.”

7. We have a Step 9 that enumerates elements into B to guarantee that B is

effectively simple.

Our tree construction will employ the following machinery:

1.

We have all of the machinery of Chapter 2 of [6], with the same redefinition of
consistency as in §1.2.1, and again restricted to A and B. (Note, however, that
we shall make no use of the notion of Rz—consistency.) We will henceforth uni-
versally adopt the convention, used previously in §1.2.4 and §1.3.2, of omitting

the superscript A and B that indicates this restriction.

. We again fix an enumeration {ZS}SEW of A.

. We will again be enumerating {A;};c, and {Bs}se, through exterior moves,

just as in the proof of Theorem 1.1.6.

. Also as in that proof, we have a list £9 of pairs of the form {(«, 7/, used to satisfy

the requirement that v € G2 implies ¥ € é\f In this construction, however, this
list is periodically updated in accordance with M\a, rather than being updated

when elements are enumerated into A,.

60

5. From our construction we will define (in the proof of Lemma 2.5.1) a collection
of c.e. sets { £, }icw for every node o and a-state v. Since A is promptly simple,

by [14, Proposition XIII.1.3] there exists a computable function ¢ such that

|E3‘7l =00 = (Is)(Fz)[x € EjiasN Ayl
By the Recursion Theorem, we can assume that we know this function ¢ in

advance.

6. For every node «, for every state v € ﬁa, we have the infinite set of markers
{fgz}zew One marker of this type will be attached to any element that enters

S, in a-state v. This marker is removed only if Z leaves state 7, either by

(a) A RED move of some kind,

(b) An exterior BLUE move, to help guarantee either the correspondence of

GA and GP or the effective simplicity of B, or

(c) Step 1 or 11C.

The Harrington-Soare construction guarantees that for any given o removals
of type (c) occur only finitely often, and we will guarantee that for any given
marker removals of type (b) occur only finitely often, so eventually each marker
rests on an element suitable for use in the proof that an R-inconsistent o cannot

be on the true path.

7. We define an effective bijection | - | from the set of all possible [-markers to w.
(This can be done because we can regard the the tree T as a subset of w* as in
[6, §2.2], so the nodes of T can be given an effective numbering a(«), and for
any « the finitely many a-states © can be given an effective numbering 7, so
any tag f,ojz can be effectively identified with a triple (a(«),n(?),7).) We call

|f§z| the order of fgl

2.5.2 Construction

Our construction is as follows:

61

Stage s = 0. For all @ € T define Uyg = Voo = [7&,0 = ‘7(170 = (), and define
m(a,0) = 0. Define Y, = ?)\,0 = (), and fo = A. Define Ay = By = (). Every marker

I'?, o is unassigned.
bas)

Stage s+ 1. Find the least n < 11 such that Step n applies to some = € Y, ; and
perform the intended action. If there is no such n, then find the least n < 11 such
that Step n applies to some T € ?a,s, and perform the indicated action. If none of

these steps applies, then apply Step 11, and go to stage s + 2.

Steps 1, 2. In the non-dual case, the same as in [6] (restricted to A and B). In the
dual case, each has an added step at the end ((1.13) or (2.7), respectively) to add a
T-marker if appropriate:

(1.13)/(2.7) Where i, = i(«, &, 5+ 1), the a-state in which # has just entered Y,
if 1 € R, then attach marker fghi’sﬂ to 2, for the least 7 such that fghi’s is not
attached to any element.

Step 3. In the nondual case, the same as in [6] (restricted to A and B). In the dual
case, we need to add a step to remove any marker that is no longer applicable:

(§6) If any marker /I\‘?,‘O’i’s is attached to the & that we have just moved out of state
vy, remove this marker.

Step 7. (Moving covering elements into B.)

Find the first unmarked pair (o, 7) in £9 such that for some & € :S'\g,s,

(7.a) € », and

(w.b) No T-marker on Z has ever been detached by Step 7.

Then

(7.1) Enumerate the least such Z into B,

(7.2) Mark the current copy of («, 7), and

(7.3) Detach all [-markers from z.

(In other words, this is just Step 8 from the proof of Theorem 1.1.6, modified to deal
with f—markers, and moved into a position between Steps 3 and 21\)

We must alter Step 4 slightly to include the RED enumeration of elements into
A,

Step 4. (Delayed RED enumeration into As,; and U,.)

62

(4A) Suppose some x € Y, and x € Zq(s). Enumerate the least such x into A,,, and

end Step 4.

(4) Suppose = € R, s and
(4.1) eq > e,
(4.2) x ¢ U,,, and

(4.3) ¥ € Ze, s =dtn Uea,s N V51

Action. Choose the least such pair (o, z) and

(4.4) Enumerate x in Uy 4.

Step 4, however, is just the same as in [6] (restricted to A and B), with an added
action for removing obsolete markers:

(4.5) For any marker fghi,s attached to & such that we have just moved Z out of
state v1, remove that marker.
Step 5. This step, in the non-dual case, is the same as in [6] (restricted to A and
B). Its dual, however, must be changed to reflect the fact that we no longer have any
consideration of R-consistency:
Step 5. (BLUE emptying of state v € ga) Suppose for a € T there exists & such
that

(5.1) o(av, 2, s) = iy € By, and

(5.2) € S,..
Action. Choose the least such pair («,). Enumerate & into B,. (No marker removal

is necessary, because by definition of B and R there cannot exist any 0 C « such that

v € B, and 0]6 € Ry.)

Step 9. (Guaranteeing that B is effectively simple.) Take the least e such that
WesN ?/\,s| > e and W, , C B,. Take the 2 € [W,,N }A/Ays| whose lowest-order marker

is of the highest order. Enumerate z into B and remove all of its markers.

Step 11. This is the same as in [6], except that we redefine Substep 11B and 11C:

63

Substep 11B. (Defining m(«, s + 1), Ls11, Es+1, and Eng.) For every a C fyyq if
every a-entry (o, v) on L,, and a-entry (o,) on L, is marked we say that the lists
are a-marked and we

(11.1) Define m(cr, s + 1) = m(a, s) + 1.

(11.2) Add to the bottom of list £, (L) a new (unmarked) a-entry (o, v) (v, 7))
for every such a and every v € M,,. Let the resulting list be £5+1(ES+1).

(11.3) Add to the bottom of list £ a new (unmarked) a-entry (o, #) for every
such « and every v € M.,. Let the resulting list be £9_ ;.

If lists £, and £, are not both a-marked then let m(cv, s+1) = m(q, s), Lys1 = Ls,

Loy =Ly, and £9,, = LS.

Substep 11C For every a such that f;1; <p «a, remove all markers from all elements

of S, and initialize «.

2.5.8 Verifying Correctness of /\/lz, /\//TE, NZ, and N'B on f

Just as in §1.3.1, we may assume without loss of generality that A is infinite and
coinfinite, and then we have that the tree properties of §1.2.2 hold for our restricted
construction. Then it suffices to verify that the versions of Lemmas 5.1 through 5.12
for the A/B game hold as they did for the overall game in the Harrington-Soare

construction.
Lemmas 5.1-5.6 These are stated and proved exactly as in §1.3.2.

Lemma 5.7. This is stated exactly as in [6] and §1.3.2, and is proved exactly as
in [6] (rather than as in §1.3.2).
Lemma 5.8. The statement of this lemma is as in §1.3.2. The proof must be

altered in a few details, however:

Proof. By Lemma 5.6(i) Step 11E must eventually put every element z € w into Y.
By induction we may assume that R ., =* Y3NA =* A and Y} is infinite, for 3 = a .
By Lemma 5.7 m(a) = oo and m(vy) < oo for all v <p a with vy~ = f.

By Lemma 5.3, Y., =" 0. For any z that is in Sg at some stage and is never

moved into Y., by Step 11C, x is eventually moved either into A by Step 4A, or into

64

Sé by Step 11D. (For the dual case, this should read “Z is eventually moved either
into B by Step 5, 7, or 9, or into :S’\é by Step 11D.”) For any x that is in S§ at some
stage and is never moved into Y., by Step 11C, x is eventually moved either into A
by Step 4A, or into S, by Step 1 or Step 2. (For the dual case, this should read “z
is eventually moved either into B by Step 5 or §, or into §a by Step Tor Step /2\.”)

Thus, almost every x € Rg not yet in R, that never enters A will eventually
enter S,. By Lemma 5.4(v) almost every such z will remain in R, forever. Thus,
Royoo = Y, NA="Y;NA="A4A.

Also, since Yj is infinite, 5 must contain at least one state v. By Lemma 5.7(iii)
((iv) in the dual case), v € &,; that is, infinitely many elements enter Y, in state v.

Thus, Y, is infinite. []

Lemma 5.9 is stated exactly as in [6] and §1.3.2, but the proof is very slightly
different from the proof in the former (because the statements of Lemmas 5.8 and
5.4(v) are slightly different) and significantly different from the proof in the latter
(because now, as in [6], elements only move by RED in Step 4, so we don’t have to

worry about elements vanishing into A before Step 3 can act on them):

Lemma 5.9. a C f = « is M-consistent.

Proof. Let a C f and f = a~. Assume for a contradiction that « is not M-consistent.
Then e, > ez and there exist vy € Mg, 11 ¢ Mg, vy <p v1 and vi| 5 € Mg. Then «
is a terminal mode on T so S, = R,. By Lemmas 5.8 and 5.4(v), Sa N A is infinite
and no z € S, 5, 5 > v,, later leaves S, except possibly to enter A. By Lemma 5.7,
Ea D2 M, s0

(3%°x)(3s)[z € Sast1 — Sas & via,z,s+1) = 1y].

Choose any such z and s > v,. Now neither Step 1, nor Step 2, can apply to z at
any stage t > s. Hence, by the ordering of the steps, Step 3, must apply to some such
x' at some stage t+1 > s+ 1 with v(«a, 2',t) = vy and must cause v(a,2',t+1) = 1.

Thus, « is provably incorrect at all stages v >t +1,s0 a ¢ f. []

65

Lemma 5.10. Just as in [6] and §1.3.2.

We have no Lemma 5.11 in the nondual case, because we have no consideration of
R-consistency. Lemma 5.ﬁ, on the other hand, is stated exactly as in [6] and §1.3.2.
The proof is somewhat more complicated, because we have to make sure that the

disappearance of elements by Steps 7 and 9 does not cause problems.

Lemma 5.11. o C f = «ais R-consistent.

Proof. Assume for a contradiction that @ C f and « is not R-consistent. Choose
D1 € Rq such that for all oy € My, 71 £5 s. By equation (42) of [6] «v is a terminal
node on 7T so §a = Ea. Thus, by Lemma 5.4(v), for some v,, no & € §a,s N B later
leaves §a.

Assume for a contradiction that there are only finitely many elements z such that
Step 4 applies to 4 at some stage s when v(a,%,8) = 1. Then we can prove the

following claim:
Claim 1. For every 7 € w, there is an element z; and a stage s; such that
1. z; € }Afaysiﬂ — ffa,si, and

9. Ta

1,05t

=g;forallt>s; +1.

Proof. [Claim 1] We proceed by induction on i. Suppose we have our statement for
all 7/ < i. Take s = max{sy : i’ < i}.

Now, any collection of more than e elements must include one whose lowest order
marker is of order > e. Thus, for any e > |fsz|, if Step 9 acts on W, by putting an
element of W, , N i/}s into B,y then that element will not be fgz, because there are
|[Wes N f’s| > ¢ elements to choose from, and one of them will have a higher-order
lowest-order marker. Thus, Step 9 can remove the marker fﬁ‘l at most |/I;3l| + 1 times
(in acting on W, for e < |f,0j,z| +1).

Then take any stage ¢ > max{v,, s} by which

1. Step 9 has removed marker fgﬂ all the times it ever will.

2. Step 7 has removed marker fﬁ‘ll if it ever will. (Note that Step 7 can remove

a given marker at most once.)

66

3. Step 1 will never again apply to any & in state 7.

Then after stage ¢, fﬁ‘” can never be removed from an element by Step 1 or 11C (since
t > v), or by Step T, 4, or 9, or by Step 3 (since by Lemma 5.9, ais M\—consistent)
or by Step 5 (since there cannot exist any ¢ C « such that 0 € l?a and v[d € 735);
that is, if f‘?j” is ever attached to an element at some stage > ¢, it remains attached
permanently. Also, since ¢ > s, if any element & ever enters)/}a in state 7 at any stage
> ¢, it will be marker /F\?j” that will be attached to Z unless f?,‘” is already attached
to some element. Thus, since 7, € ﬁa - M\a = E,’\a, by some stage later than ¢
ff;hi must be permanently attached to some element 2, which must have received the

marker when entering)/}a in state at some stage s; + 1. []

But if, say, v(«,Zo,t) = 0 for all t > s¢ then Z, witnesses that ﬁ(a‘,ﬁl) fails
SO Iy € ﬁa contradicts a« C f. Hence, by contradiction we know that Step 1 applies
infinitely often to elements & € §a in state ;. Then there must be some state 0, to
which infinitely many of these elements are moved. Now 75 €]/-:a, SO Uy € M\a by

Lemma 5.10. []

The statement of Lemma 5.12 is the same as in [6] and §1.3.2, and so is the proof
in the dual case, but in the nondual case it is somewhat different because there is no

longer any consideration of R-consistency.

Lemma 5.12. If « C f and vy € B, then {z:z €Y, & v(a,z) =11} =* (.

Proof. Fix a C f and vy € B,. Let v, be as in Lemma 5.4(v). Assume for a
contradiction that x € R, for some s > v, and that for all t > s, v = a(x,t), and
vy =v(a,z,t). Nowy D aand a € T'sov] € B, forall v] € M, such that v|[a = 1.
Then Step 5 applies to x and vy at some stage t +1 > s so x is enumerated into By.

Thus, just as in §1.3.2, we now have that M%, ./T/l\ﬁ, N4 and N'B are all correct

on f, and f is infinite.

67
2.5.4 Verifying that G4 = GB.

Since M, = M\a for any «, it suffices to verify two lemmas:
Lemma 2.5.1 For any a C f, G/ = M,.
Lemma 2.5.2 For any o C f, Q\f = M\a.

Proof. [Lemma 2.5.1.] For any node «a, a-state v, and i € w, we define the c.e. set

Ef; to be the set of all elements entering Sy in state v after stage i (enumerated by

o
v,i

Then take any o C f. Since G4 C M, we need only show that M, C G2. Take any
veM,.

Since v € M, = €Y, E2, is infinite for every i, so for each i there is some z; € E%,

enumerating each such element into E¢; in the same stage in which it enters SY).

and some stage s; such that z; € EJ; . N Zq(si). Note that such an s; must be
greater than 7.

We define the sequence iy < 7; < 75 < ... inductively as follows:

1. Let 2y =0.

2. Given any i,, we can find x; and s; as above. Let i,.1 = s;, .

Then z;, enters S in state v at stage i,41, by Step 1 or 2. Neither Step 1 nor

Step 2 can act on any z;, while z;, is in S2, and Step 3 cannot either because « is
M-consistent (by Lemma 5.9). Thus, since each x; € gq(si), eventually each x; is

enumerated by Step 4A into A, from state v. Thus, v € G. []

Proof. [Lemma 2.5.2.] Take any o C f. Again, we need only show that M\a - QAf
Take any v € M\a. Then since lims m(a, s) = oo, infinitely many copies of the pair
(o, D) appear in LY. Take any such copy, and let s be a stage such that every element
ahead of it in £9 that will ever be marked has already been. By Lemma 5.7, & € £,
so at some stage ¢ > s an element 2 enters S° in state 2. Then neither Step T nor

Step 2 can act on 7 as long as & remains in SY, and Step 3 cannot either because o

a’

is M-consistent (by Lemma 5§) Thus, the given copy of (a,) must be marked at

68

some stage t' > t by Step 7 acting on z, unless it is marked by some other action of
Step 7 on an element of state o.
Hence, every copy of («,) is eventually marked, so infinitely many elements enter

B from state 0, so o € G5.]

Having shown that G4 = §B, we also have that the tree properties of §1.2.2 hold

for the overall construction, just as in §1.3.4.

2.5.5 Verifying that B 1s Effectively Simple.

We wish to verify that every requirement P, is satisfied. Take any e such that |[W,| > e.
Take s such that |V, | > e. Let ¢t > s be a stage by which

1. Every i < e that will ever be acted on by Step 9 already has been, and
2. We, C Yau

Then at the next stage ¢’ + 1 at which Step 9is reached, we will have W, ; C W, 41N
)/},\,,y and therefore [, 441 N 5/},\,,5/| > e, 50 if W11 C By then Step 9 will enumerate
an element of W,y into B. Thus, W, 41 € By, and therefore W, ¢ B. n

REFERENCES

[1] M. Blum and I. Marques, On complexity properties of recursively enumerable
sets, J. Symbolic Logic 38 (1973), 579-593.

2] P. A. Cholak, Automorphisms of the Lattice of Recursively Enumerable Sets,
Memoirs of the Amer. Math. Soc. 113, 1995.

(3] P. A. Cholak, The Dense Simple Sets are Orbit Complete, Proceedings of the
Oberwolfach Conference on Computability Theory in 1996, Journal of Pure and
Applied Logic 94 (1998), 37-44.

[4] R. Downey and M. Stob, Automorphisms of the lattice of recursively enumerable
sets: Orbits Advances in Math. 92 (1992), 237-265.

[5] L. Harrington and R. I. Soare, Post’s Program and incomplete recursively enu-
merable sets, Proc. Natl. Acad. of Sci. USA 88 (1991), 10242-10246.

(6] L. Harrington and R. I. Soare, The A} automorphism method and noninvariant
classes of degrees, Jour. Amer. Math. Soc. 9 (1996), 617-666.

[7] W. Maass, Recursively enumerable generic sets, J. Symbolic Logic 47 (1982),
809-823.

[8] E. L. Post, Recursively enumerable sets of positive integers and their decision
problems, Bull. Amer. Math. Soc. 50 (1944), 284-316.

9] R. W. Robinson, The Inclusion Lattice and Degrees of Unsolvability of the Re-
cursively Enumerable Sets, Ph.D. Dissertation, Cornell University, 1966.

[10] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability,
McGraw-Hill, New York, 1967.

[11] J. R. Shoenfield, Quasicreative sets, Proc. Amer. Math. Soc. 8 (1957), 964-967.

[12] R. I. Soare, Automorphisms of the recursively enumerable sets, Part I: Maximal
sets, Ann. of Math. (2) 100 (1974), 80-120.

[13] R. L. Soare, Automorphisms of the lattice of recursively enumerable sets, Part
IT: Low sets, Ann. Math. Logic 22 (1982), 69-107.

[14] R. L. Soare, Recursively Enumerable Sets and Degrees: A Study of Computable
Functions and Computably Generated Sets, Springer-Verlag, Heidelberg, 1987.

69

